Câu hỏi:

22/02/2024 1,244

Cho đồ thị của hàm số C:y=fx  như hình vẽ. Biết (C) cắt Ox tại 3 điểm có hoành độ lần lượt là x=1;x=1;x=2  và diện tích hình phẳng giới hạn bởi C;Ox;x=1;x=1  bằng S1=15  và hai diện tích hình phẳng giới bởi C;Ox;x=1;x=2   bằng S2=3 .

Cho đồ thị của hàm số (C): y = f(x) như hình vẽ. Biết (C) cắt Ox tại 3 điểm có hoành độ lần lượt là x = -1; x = 1; x = 2 và diện tích hình phẳng  (ảnh 1)

Giá trị của 12fxdx  bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Từ giả thiết và hình vẽ, ta có: Cho đồ thị của hàm số (C): y = f(x) như hình vẽ. Biết (C) cắt Ox tại 3 điểm có hoành độ lần lượt là x = -1; x = 1; x = 2 và diện tích hình phẳng  (ảnh 2)

Suy ra Cho đồ thị của hàm số (C): y = f(x) như hình vẽ. Biết (C) cắt Ox tại 3 điểm có hoành độ lần lượt là x = -1; x = 1; x = 2 và diện tích hình phẳng  (ảnh 3) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Bán kính mặt cầu (S) là khoảng cách từ điểm I đến mặt phẳng (P)

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y - z - 3 = 0 và điểm  I(1;2;-3).  (ảnh 1).

Phương trình mặt cầu (S) có tâm I(1;2;-3) và bán kính R = 2 

S:x12+y22+z+32=4.

Lời giải

Đáp án đúng là: C

Cách 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a, SA vuông góc với mặt phẳng đáy và SA bằng 2a. Gọi M ,N lần lượt là trung điểm  (ảnh 1)

Chọn hệ trục tọa độ Oxyz sao cho A trùng với O; và giả sử a =1 vẫn không làm mất tính tổng quát của bài toán.

Khi đó, Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a, SA vuông góc với mặt phẳng đáy và SA bằng 2a. Gọi M ,N lần lượt là trung điểm  (ảnh 2)

MN= 1;2;-1; SC = 2;2;-2; MS = 0;0;1

dMN,SC=MN,SC.MSMN,SC=22

Cách 2:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a, SA vuông góc với mặt phẳng đáy và SA bằng 2a. Gọi M ,N lần lượt là trung điểm  (ảnh 3)

Kẻ PN//SC; NQ//MP

Kẻ AK  MQ  ; dễ thấy AK (MNPQ) 

dMN,SC=dSC,MNP=dS,MNP=dA,MNP=dA,MPNQ=AK

AK=AMAQMQ=aaa2=a22

Cách 3: (PB bổ sung) Gọi Kẻ E là trung điểm SB, dễ thấy MN//EC

dMN,SC=dMN,SCB=12dA,SBC=12AE=a22

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tập nghiệm của phương trình 17x22x3=7x+1  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay