Câu hỏi:

22/02/2024 1,204

Trong không gian Oxyz, cho mặt cầu x+12+y22+z12=9 và mặt phẳng P:x+2y+2z+6=0;Q:x2y+z+2023=0. Điểm N di động trên (S), điểm (M) đi động trên (P) sao cho MN vuông góc với (Q). Độ dài lớn nhất của đoạn thẳng MN bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Xét (S) có tâm I ( -1;2;1) và bán kính R =3.

Ta có: dI,P=1+2.2+2.1+612+22+22=113>R.

Trong không gian Oxyz, cho mặt cầu (x + 1)^2 + (y - 2)^2 + (z - 1)^2 = 9 và mặt phẳng  (P): x + 2y + 2z + 6 = 0; (Q): x - 2y + z + 2023 = 0.  (ảnh 1)

Gọi H là hình chiếu vuông góc của N trên mặt phẳng (P) α là góc giữa MN và NH.

MNQ nên góc α có số đo không đổi, α=HNM^.

Ta có HN=MN.cosαMN=1cosα.HN nên MN lớn nhất HN lớn nhất. HN=dI,P+R=203.

Lại có cosα=cosu,nP=136 nên MN1cosαHN=136203=206.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Phương trình đường thẳng HM đi qua M(4;2;0) nhận vectơ pháp tuyến của (P) nP=2;1;1làm vectơ chỉ phương nên có phương trình tham số là x=4+2ty=2+tz=t

H4+2t;2+t;t.

 Mà HP24+2t+2+t+t4=0t=1

H2;1;1a+b+c=2+1+1=4.

Câu 2

Cho hàm số y=fx xác định trên , có đạo hàm f'x=x3x12(x+2),x. Khoảng nghịch biến của hàm số y=fx là:

Lời giải

Ta có: f'x=0 x3x12(x+2)=0x=0x=1x=2.

Bảng xét dấu

Cho hàm số y = f(x) xác định trên R, có đạo hàm f'(x) = x^3(x-1)^2(x+1), với mọi x thuộc R . Khoảng nghịch biến của hàm số  (ảnh 1)

Dựa vào bảng xét dấu hàm số nghịch biến trên khoảng (-2;0).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP