Câu hỏi:

24/02/2024 1,945

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (0;2;2), B (2;-2;0). Gọi I11;1;1 I23;1;1 là tâm của hai đường tròn nằm trên hai mặt phẳng khác nhau và có chung một dây cung AB. Biết rằng luôn có một mặt cầu (S) đi qua cả hai đường tròn ấy. Tính bán kính R của (S).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (0;2;2), B (2;-2;0). Gọi I1 (1;1;-1) và I2 (3;1;1) là tâm của hai đường tròn  (ảnh 1)

Gọi d1 là đường thẳng đi qua I1 và vuông góc với mặt phẳng I1AB, khi đó d1 chứa tâm các mặt cầu đi qua đường tròn tâm I1.

d2 là đường thẳng đi qua I2 và vuông góc với mặt phẳng I2AB, khi đó d2 chứa tâm các mặt cầu đi qua đường tròn tâm I2.

Do đó, mặt cầu (S) đi qua cả hai đường tròn tâm I1 I2 có tâm I là giao điểm của d1, d2 và bán kính R = IA.

Ta có I1A=1;1;3;I1B=1;3;1. Đường thẳng d1 có vectơ pháp tuyến là :

I1A;I1B=10;4;2=25;2;1.

Phương trình đường thẳng d1 d1:x=1+5ty=1+2tz=1+t.

Ta có I2A=3;1;1,I2B=1;3;1. Đường thẳng d2 có vectơ pháp tuyến là :

I2A;I2B=2;4;10=21;2;5.

Phương trình đường thẳng d2 d2:x=3+sy=12sz=1+5s.

Xét hệ phương trình 1+5t=3+s1+2t=12s1+t=1+5st=13s=13. Suy ra I83;53;23.

Bán kính mặt cầu (S) R=IA=832+2532+2+232=1293.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Giả sử số hạng 1024 là số hạng thứ n.

Ta có, un=1024 un=u1.qn1=2n1 suy ra 2n1=1024n=11.

Lời giải

Đáp án đúng là: B

Ta có Sxq=2πRhR=Sxq2πh=9a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP