Câu hỏi:

24/02/2024 519 Lưu

Cho hình bình hành ABCD có A^=120°. Tia phân giác của D^ qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD có góc a = 120 do . Tia phân giác của góc D qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng: (ảnh 1)

a) Hình bình hành ABCD có BAD^,ADC^ ở vị trí trong cùng phía.

Suy ra ADC^=180°BAD^=60°

Khi đó ADI^=IDC^=ADC^2=30° (do DI là tia phân giác của ADC^).

AID^=IDC^ (cặp góc so le trong).

Vì vậy AID^=ADI^

Suy ra tam giác ADI cân tại A.

Do đó AD = AI.

Mà AB = 2AI (I là trung điểm của AB).

Vậy AB = 2AD (điều phải chứng minh).

b) Gọi J là trung điểm của DI.

Tam giác ADI có AJ là đường trung tuyến.

Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.

Khi đó JAI^=DAJ^=DAI^2=60°

Xét ∆AJD và ∆DHA, có:

AJD^=DHA^=90°

AD là cạnh chung;

DAJ^=ADH^=60°

Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).

Suy ra DJ = AH (cặp cạnh tương ứng).

Mà DI = 2DJ (J là trung điểm của DI).

Vậy DI = 2AH (điều phải chứng minh).

c) Ta có BI = BC=12AB

Suy ra tam giác IBC cân tại B.

Mà IBC^=ADC^=60°

Do đó tam giác IBC đều.

Vì vậy IC = IB = IA.

Khi đó tam giác ABC vuông tại C hay ACB^=90°

Suy ra DAC^=ACB^=90°

Vậy AD  AC (điều phải chứng minh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.   a) Tìm giao điểm của AM và (SBD).   b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).  (ảnh 1)

a) Gọi AC ∩ BD = O

Khi đó O(SAC) và O (SBD)

O (SAC) ∩ (SBD)

Lại có S (SAC) ∩ (SBD)

Do đó (SAC) ∩ (SBD) = SO

Gọi AM ∩ SO = P

Khi đó P AM và P SO, SO (SBD)

Vậy AM ∩ (SBD) = P

b) Gọi AN ∩ BD = Q

Khi đó Q (AMN) và Q(SBD)

Lại có P (AMN) và P (SBD)

Vậy (AMN) ∩ (SBD) = PQ

Gọi PQ ∩ SD = R

Suy ra R (AMN) và R SD

Vậy SD ∩ (AMN) = R.

Lời giải

Cho tam giác nhọn ABC. Chứng minh S ABC = 1/2 BC. BA.. sin B = 1/2 AB. AC . sin A = 1/2 CA. CB. sin C (ảnh 1)

Kẻ đường cao AH, BD

SABC=12.AH.BC (*)

Mà tam giác AHB vuông tại H nên: sinB^=AHABAH=AB.sinB^

Khi đó: SABC=12.AB.BC.sinB^

Tương tự: Trong tam giác AHC vuông tại H có: sinC^=AHACAH=AC.sinC^

Khi đó: SABC=12.AC.BC.sinC^

Ta có: SABC=12.BD.AC (*)

Trong tam giác BAD vuông tại D có: sinA=BDABBD=AB.sinA^

Thay vào (*) có: SABC=12.BD.AC=12.AB.AC.sinA^.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP