Câu hỏi:
12/07/2024 451Cho bốn số nguyên dương phân biệt sao cho tổng của mỗi hai số chia hết cho 2 và tổng của mỗi ba số chia hết cho 3. Tìm giá trị nhỏ nhất của tổng bốn số này?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi 4 số cần tìm là a, b, c, d (a, b, c,d ∈ ℕ*; a < b < c < d)
Tổng của mỗi 2 số chia hết cho 2
⇒ a, b, c, d đồng dư với nhau theo môđun 2
Hay a ≡ b ≡ c ≡ d (mod 2)
Tổng của mỗi 3 số chia hết cho 3
⇒ a, b, c, d đồng dư với nhau theo mô đun 3
Hay a ≡ b ≡ c ≡ d(mod 3)
Ta có nếu hai số đồng dư với nhau theo nhiều môđun thì chúng đồng dư với nhau theo môđun là BCNN của các môđun ấy nên: a ≡ b ≡ c ≡ d (mod 6)
Vì cần tìm giá trị nhỏ nhất của 4 số thoả mãn nên ta chọn a là số nguyên dương nhỏ nhất hay a = 1
b = a + 6 = 7
c = b + 6 = 13
d = c + 6 = 19
Vậy 4 số nguyên dương phân biệt nhỏ nhất thoả mãn là 1; 7; 13; 19.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.
a) Tìm giao điểm của AM và (SBD).
b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).
Câu 3:
cho các tập hợp A = (2; +∞) và B =[m2 - 7; +∞) với m > 0. Tìm m để A\B là một khoảng có độ dài bằng 16.
Câu 5:
Cho Hình 21. Biết x // z, y // z và góc .
a) Tính góc .
b) Tính góc.
Câu 6:
Cho chóp S.ABCD. M, N lần lượt là trung điểm của SB, SD. Tìm giao điểm của (AMN) và SC.
Câu 7:
Cho hình bình hành ABCD có ; AD = 2AB. Gọi M là trung điểm của BC, N là trung điểm của AD.
a) MCND là hình thoi.
b) ABMD là hình thang cân.
về câu hỏi!