Câu hỏi:
24/02/2024 345
Cho các số thực a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng a5 + b5 + c5 chia hết cho 5.
Cho các số thực a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng a5 + b5 + c5 chia hết cho 5.
Quảng cáo
Trả lời:
a5 – a = a(a4 – 1) = a(a2 – 1)(a2 + 1)
= a(a2 – 1)(a2 – 4 + 5)
= a(a2 – 1)(a2 – 4) + 5a(a2 – 1)
= a(a + 1)(a – 1)(a + 2)(a – 2) + 5a(a2 – 1) chia hết cho 5.
Vì a – 2, a – 1, a, a + 1, a + 2 là 5 số nguyên liên tiếp nên có một số chia hết cho 5
⇒ a(a + 1)(a – 1)(a + 2)(a – 2) chia hết cho 5
Mặt khác : 5a(a2 – 1) chia hết cho 5
Tương tự có b5 – b chia hết cho 5, c5 – c chia hết cho 5.
Mà a + b + c = 0
Do đó a5 + b5 + c5 = (a5 – a) + (b5 – b) + (c5 – c) chia hết cho 5
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi AC ∩ BD = O
Khi đó O∈(SAC) và O ∈ (SBD)
⇒ O ∈ (SAC) ∩ (SBD)
Lại có S ∈ (SAC) ∩ (SBD)
Do đó (SAC) ∩ (SBD) = SO
Gọi AM ∩ SO = P
Khi đó P ∈ AM và P ∈ SO, SO ⊂ (SBD)
Vậy AM ∩ (SBD) = P
b) Gọi AN ∩ BD = Q
Khi đó Q ∈ (AMN) và Q∈(SBD)
Lại có P ∈ (AMN) và P ∈ (SBD)
Vậy (AMN) ∩ (SBD) = PQ
Gọi PQ ∩ SD = R
Suy ra R ∈ (AMN) và R ∈ SD
Vậy SD ∩ (AMN) = R.
Lời giải

Kẻ đường cao AH, BD
(*)
Mà tam giác AHB vuông tại H nên:
Khi đó:
Tương tự: Trong tam giác AHC vuông tại H có:
Khi đó:
Ta có: (*)
Trong tam giác BAD vuông tại D có:
Thay vào (*) có: .Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.