Câu hỏi:
11/07/2024 229Cho các số thực x, y thỏa mãn x + y = 1, x3 + y3 = 2.
Tính giá trị của biểu thức M = xy, N = x5 + y5.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
x3 + y3 = (x + y)(x2 – xy + y2) = x2 – xy + y2 = (x + y)2 – 3xy = 1 – 3xy
⇔ 3xy = 1 – 2 = -1
⇔
Suy ra:
Lại có: x2 + y2 = (x + y)2 – 2xy =
N(x + y) = (x5 + y5)(x + y) = x6 + x5y + xy5 + y6
= (x2)3 + (y2)3 + xy(x4 + y4)
= (x2 + y2)[(x2)2 – x2y2 + (y2)2] + xy[(x2)2 + 2x2y2 + (y2)2 - 2x2y2]
Suy ra: N = x5 + y5 = .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.
a) Tìm giao điểm của AM và (SBD).
b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).
Câu 3:
cho các tập hợp A = (2; +∞) và B =[m2 - 7; +∞) với m > 0. Tìm m để A\B là một khoảng có độ dài bằng 16.
Câu 5:
Cho Hình 21. Biết x // z, y // z và góc .
a) Tính góc .
b) Tính góc.
Câu 6:
Cho chóp S.ABCD. M, N lần lượt là trung điểm của SB, SD. Tìm giao điểm của (AMN) và SC.
Câu 7:
Cho hình bình hành ABCD có ; AD = 2AB. Gọi M là trung điểm của BC, N là trung điểm của AD.
a) MCND là hình thoi.
b) ABMD là hình thang cân.
về câu hỏi!