Cho dãy số thập phân: 1,1; 2,2; 3,3; ......; 97,9; 99,0.
a) Số hạng thứ 50 của dãy là số nào?
b) Dãy số này có bao nhiêu số hạng?
c) Tính tổng của dãy số trên?
Cho dãy số thập phân: 1,1; 2,2; 3,3; ......; 97,9; 99,0.
a) Số hạng thứ 50 của dãy là số nào?
b) Dãy số này có bao nhiêu số hạng?
c) Tính tổng của dãy số trên?
Quảng cáo
Trả lời:

Khoảng cách giữa 2 số là 1,1.
a) Gọi số hạng thứ 50 là a, ta có:
(a - 1,1) : 1,1 + 1 = 50
(a - 1,1) : 1,1 = 49
a - 1,1 = 49 . 1,1
a = 53,9 + 1,1
a = 55
Vậy số cần tìm là 55.
b) Số số hạng của dãy số là:
(99 - 1,1) : 1,1 + 1 = 90 (số)
c) Tổng dãy số trên là:
(99 + 1,1) . 90 : 2 = 4504,5
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi AC ∩ BD = O
Khi đó O∈(SAC) và O ∈ (SBD)
⇒ O ∈ (SAC) ∩ (SBD)
Lại có S ∈ (SAC) ∩ (SBD)
Do đó (SAC) ∩ (SBD) = SO
Gọi AM ∩ SO = P
Khi đó P ∈ AM và P ∈ SO, SO ⊂ (SBD)
Vậy AM ∩ (SBD) = P
b) Gọi AN ∩ BD = Q
Khi đó Q ∈ (AMN) và Q∈(SBD)
Lại có P ∈ (AMN) và P ∈ (SBD)
Vậy (AMN) ∩ (SBD) = PQ
Gọi PQ ∩ SD = R
Suy ra R ∈ (AMN) và R ∈ SD
Vậy SD ∩ (AMN) = R.
Lời giải

Ta có: a // AB và b // AB nên a // b
Vì a // AB nên
Mà (vì đối đỉnh)
Nên:
Lại có:
Suy ra:
Lại có: AB // b nên:
Mà
Vậy .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.