Câu hỏi:
12/07/2024 1,034Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M và N lần lượt cắt AD và AF tại M’ và N’. Chứng minh
a) (ADF) // (BCE).
b) M′N′ // DF.
c) (DEF) // (MM′N′N) và MN // (DEF).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) AD // BC; BC ⊂ (BCE) nên AD // (BCE)
AF // BE; BE ⊂ (BCE) nên AF // (BCE)
Mà AD, AF ⊂ (ADF)
Vậy (ADF) // (BCE)
b) Vì ABCD và ABEF là các hình vuông nên AC = BF. Ta có:
So sánh (1) và (2) ta được:
suy ra: M’N’ // DF
c) Từ chứng minh trên suy ra DF // (MM′N′N)
NN’ // AB nên NN’ // EF
Và NN’ ⊂ (MM’NN’) nên EF // (MM’NN’)
Mà DF, EF ⊂ (DEF) nên (DEF) // (MM′N′N)
Vì MN ⊂ (MM′N′N) và (MM′N′N) // (DEF) nên MN // (DEF).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.
a) Tìm giao điểm của AM và (SBD).
b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).
Câu 3:
cho các tập hợp A = (2; +∞) và B =[m2 - 7; +∞) với m > 0. Tìm m để A\B là một khoảng có độ dài bằng 16.
Câu 5:
Cho Hình 21. Biết x // z, y // z và góc .
a) Tính góc .
b) Tính góc.
Câu 6:
Cho chóp S.ABCD. M, N lần lượt là trung điểm của SB, SD. Tìm giao điểm của (AMN) và SC.
về câu hỏi!