Cho hàm số f(x) hàm số y = f'(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Với giá trị nào của tham số m thì phương trình f(x) = 3x + m có nghiệm thuộc khoảng (-1;1).
Cho hàm số f(x) hàm số y = f'(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Với giá trị nào của tham số m thì phương trình f(x) = 3x + m có nghiệm thuộc khoảng (-1;1).

Quảng cáo
Trả lời:
Chọn A.
Ta có f(x) = 3x + m ⇔ f(x) − 3x = m.
Để phương trình đã cho có nghiệm thuộc khoảng (-1;1) thì đường thẳng y=m phải cắt đồ thị hàm số g(x) = f(x) − 3x, x ∈ (−1;1).
Xét hàm số g(x) = f(x) − 3x, x ∈ (−1;1)
Có g'(x) = f'(x) − 3.
Nhìn đồ thị f'(x) ta thấy, với x ∈ (−1;1) thì −1 < f'(x) < 3
⇒ g'(x) = f'(x) – 3 < 0.
Do đó, ta có bảng biến thiên như hình bên

Từ bảng biến thiên, suy ra giá trị cần tìm là g(−1) < m < g(1)
⇔ f(−1) + 3 < m < f(1) − 3.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi AC ∩ BD = O
Khi đó O∈(SAC) và O ∈ (SBD)
⇒ O ∈ (SAC) ∩ (SBD)
Lại có S ∈ (SAC) ∩ (SBD)
Do đó (SAC) ∩ (SBD) = SO
Gọi AM ∩ SO = P
Khi đó P ∈ AM và P ∈ SO, SO ⊂ (SBD)
Vậy AM ∩ (SBD) = P
b) Gọi AN ∩ BD = Q
Khi đó Q ∈ (AMN) và Q∈(SBD)
Lại có P ∈ (AMN) và P ∈ (SBD)
Vậy (AMN) ∩ (SBD) = PQ
Gọi PQ ∩ SD = R
Suy ra R ∈ (AMN) và R ∈ SD
Vậy SD ∩ (AMN) = R.
Lời giải

Kẻ đường cao AH, BD
(*)
Mà tam giác AHB vuông tại H nên:
Khi đó:
Tương tự: Trong tam giác AHC vuông tại H có:
Khi đó:
Ta có: (*)
Trong tam giác BAD vuông tại D có:
Thay vào (*) có: .Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.