Cho hàm số y = (m + 1)x + 3 (d) (m là tham số, m ≠ −1). Đường thẳng d cắt đường thẳng tại điểm M. Gọi N và P lần lượt là giao điểm của đường thẳng (d) và (d′) với trục hoành Ox. Tìm m để diện tích tam giác OMP bằng 2 lần diện tích tam giác OMN.
Cho hàm số y = (m + 1)x + 3 (d) (m là tham số, m ≠ −1). Đường thẳng d cắt đường thẳng tại điểm M. Gọi N và P lần lượt là giao điểm của đường thẳng (d) và (d′) với trục hoành Ox. Tìm m để diện tích tam giác OMP bằng 2 lần diện tích tam giác OMN.
Quảng cáo
Trả lời:

Hai đường thẳng (d) và (d′) cắt nhau khi và chỉ khi
Hoành độ giao điểm M của (d) và (d′) là nghiệm của phương trình
Mà
d cắt d' tại điểm M(0; 3)
N là giao điểm của d' với trục Ox nên
P là giao điểm của d' với trục Ox nên P(2; 0)
Suy ra
Ta có:
⇔ OP = 2ON
⇔
Vậy m ∈ {2; -4}.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi AC ∩ BD = O
Khi đó O∈(SAC) và O ∈ (SBD)
⇒ O ∈ (SAC) ∩ (SBD)
Lại có S ∈ (SAC) ∩ (SBD)
Do đó (SAC) ∩ (SBD) = SO
Gọi AM ∩ SO = P
Khi đó P ∈ AM và P ∈ SO, SO ⊂ (SBD)
Vậy AM ∩ (SBD) = P
b) Gọi AN ∩ BD = Q
Khi đó Q ∈ (AMN) và Q∈(SBD)
Lại có P ∈ (AMN) và P ∈ (SBD)
Vậy (AMN) ∩ (SBD) = PQ
Gọi PQ ∩ SD = R
Suy ra R ∈ (AMN) và R ∈ SD
Vậy SD ∩ (AMN) = R.
Lời giải

Ta có: a // AB và b // AB nên a // b
Vì a // AB nên
Mà (vì đối đỉnh)
Nên:
Lại có:
Suy ra:
Lại có: AB // b nên:
Mà
Vậy .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.