Câu hỏi:

19/08/2025 3,895 Lưu

Cho phương trình x2 – 5mx – 4m = 0 với m là tham số. Chứng minh rằng khi phương trình có 2 nghiệm phân biệt x1, x2 thì x12 + 5mx2 + m2 + 14m + 1 > 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét x2 – 5mx – 4m = 0

Ta có: ∆ = 25m2 + 16m

Để phương trình có 2 nghiệm phân biệt thì ∆ > 0

Suy ra: 25m2 + 16m > 0 hay m>0m<1625

Theo hệ thức Vi-ét ta có: x1+x2=5mx1x2=4m

Xét x12 + 5mx2 + m2 + 14m + 1

= x12 + (x1 + x2)x2 + m2 + 14m + 1

= x12 + x22 + x1x2 + m2 + 14m + 1

= (x1 + x2)2 - x1x2 + m2 + 14m + 1

= 25m2 + 4m + m2 + 14m + 1

= 26m2 + 18m + 1

= (m + 1)2 + 25m2 + 16m

Mà 25m2 + 16m > 0 và (m + 1)2 > 0 theo điều kiện của m

Vậy (m + 1)2 + 25m2 + 16m > 0 tức là x12 + 5mx2 + m2 + 14m + 1 > 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.   a) Tìm giao điểm của AM và (SBD).   b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).  (ảnh 1)

a) Gọi AC ∩ BD = O

Khi đó O(SAC) và O (SBD)

O (SAC) ∩ (SBD)

Lại có S (SAC) ∩ (SBD)

Do đó (SAC) ∩ (SBD) = SO

Gọi AM ∩ SO = P

Khi đó P AM và P SO, SO (SBD)

Vậy AM ∩ (SBD) = P

b) Gọi AN ∩ BD = Q

Khi đó Q (AMN) và Q(SBD)

Lại có P (AMN) và P (SBD)

Vậy (AMN) ∩ (SBD) = PQ

Gọi PQ ∩ SD = R

Suy ra R (AMN) và R SD

Vậy SD ∩ (AMN) = R.

Lời giải

Cho hình 20 biết a // AB, b // AB và góc man = 100 độ. Tính góc n1  (ảnh 2)

Ta có: a // AB và b // AB nên a // b

Vì a // AB nên MAB^+M1^=180°

M1^=120° (vì đối đỉnh)

Nên: MAB^=180°M1^=180°120°=60°

Lại có: MAN^=MAB^+BAN^=100°

Suy ra: BAN^=100°60=40°

Lại có: AB // b nên: BAN^=ANb^=40°

Mà ANb^=N1^

Vậy N1^=40°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP