Câu hỏi:

11/07/2024 139

Cho hình bình hành ABCD với AD = 2AB. Từ C vẽ CE vuông góc với AB. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE, MF cắt BC tại N.

a) Tứ giác MNCD là hình gì?

b) Tam giác EMC là tam giác gì?

c) Chứng minh: BAD^=2AEM^.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD với AD = 2AB. Từ C vẽ CE vuông góc với AB. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE, MF cắt BC tại N. (ảnh 1)

a) Ta có MN  CE (gt); AB  CE (gt)

Suy ra: MN // AB

Mà AB // CD (ABCD là hình bình hành) nên MN // CD

Tứ giác MNCD có MN // CD

Và MD // CN (AD // BC)

Do đó tứ giác MNCD là hình bình hành.

b) Gọi F là giao điểm của MN và EC

Hình thang AECD (EC // CD) có MF // AE // CD

Và M là trung điểm của AD (gt)

*  F là trung điểm của EC.

ΔMEC có MF là đường trung tuyến (F là trung điểm của EC)

Và MF là đường cao

Suy ra:  ΔMEC cân tại M.

c) Ta có AD = 2AB (gt)

AD = 2MD (M là trung điểm của AD)

Và AB = CD (ABCD là hình bình hành); MD = CD

Hình bình hành MNCD có MD = CD nên là hình thoi.

CM là đường phân giác nên: EMF^=CMF^

EMF^=AEM^ (hai góc so le trong và AE // MF)

CMF^=MCD^ (hai góc so le trong và MF // CD)

Nên: MCD^=AEM^

Ta có: MCD^=AEM^; 2MCD^=NCD^ (CM là phân giác NCD^)

BAD^=NCD^ (ABCD là hình bình hành)

Vậy BAD^=2AEM^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.

 a) Tìm giao điểm của AM và (SBD).

 b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).

Xem đáp án » 12/07/2024 24,744

Câu 2:

Cho hình 20 biết a // AB, b // AB và MAN^=100°. Tính N1^.

Cho hình 20 biết a // AB, b // AB và góc man = 100 độ. Tính góc n1  (ảnh 1)

Xem đáp án » 12/07/2024 7,102

Câu 3:

cho các tập hợp A = (2; +∞) và B =[m2 - 7; +∞) với m > 0. Tìm m để A\B là một khoảng có độ dài bằng 16.

Xem đáp án » 12/07/2024 6,558

Câu 4:

Cho tam giác nhọn ABC. Chứng minh SABC=12.BC.BA.sinB^=12.AB.AC.sinA^=12.CA.CB.sinC^.

Xem đáp án » 12/07/2024 6,531

Câu 5:

Cho Hình 21. Biết x // z, y // z và góc CAD^=120°.

 a) Tính góc DAz^.

b) Tính góc C1^.

Cho Hình 21. Biết x // z, y // z và góc cad = 120 độ .  a) Tính góc daz . b) Tính góc c1 (ảnh 1)

Xem đáp án » 12/07/2024 5,169

Câu 6:

Cho chóp S.ABCD. M, N lần lượt là trung điểm của SB, SD. Tìm giao điểm của (AMN) và SC.

Xem đáp án » 11/07/2024 4,660

Câu 7:

Cho hàm số y=3xx+1. Hỏi mệnh đề nào sau đây đúng?

Xem đáp án » 24/02/2024 4,296

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store