Câu hỏi:
12/07/2024 651
Cho hình vẽ biết AB // CD < AD // BC, AC cắt BD tại O. Chứng minh
a) AB = CD; AD = BC.
b) OA = OC; OB = OD.
Cho hình vẽ biết AB // CD < AD // BC, AC cắt BD tại O. Chứng minh
a) AB = CD; AD = BC.
b) OA = OC; OB = OD.

Quảng cáo
Trả lời:
a) Xét tam giác ABD và tam giác CBD có:
(vì AB // CD)
Chung BD
(vì AD // CB)
Suy ra: ΔABD = ΔCDB (g.c.g)
⇒ AB = CD, AD = CB
b) Xét tam giác AOD và tam giác CBO có:
(vì AD // BC)
AD = BC
(vì AD // CB)
Suy ra: ΔOAD = ΔOCB (g.c.g)
⇒ OA = OC; OB = OD.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi AC ∩ BD = O
Khi đó O∈(SAC) và O ∈ (SBD)
⇒ O ∈ (SAC) ∩ (SBD)
Lại có S ∈ (SAC) ∩ (SBD)
Do đó (SAC) ∩ (SBD) = SO
Gọi AM ∩ SO = P
Khi đó P ∈ AM và P ∈ SO, SO ⊂ (SBD)
Vậy AM ∩ (SBD) = P
b) Gọi AN ∩ BD = Q
Khi đó Q ∈ (AMN) và Q∈(SBD)
Lại có P ∈ (AMN) và P ∈ (SBD)
Vậy (AMN) ∩ (SBD) = PQ
Gọi PQ ∩ SD = R
Suy ra R ∈ (AMN) và R ∈ SD
Vậy SD ∩ (AMN) = R.
Lời giải

Kẻ đường cao AH, BD
(*)
Mà tam giác AHB vuông tại H nên:
Khi đó:
Tương tự: Trong tam giác AHC vuông tại H có:
Khi đó:
Ta có: (*)
Trong tam giác BAD vuông tại D có:
Thay vào (*) có: .Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.