Câu hỏi:

19/08/2025 2,101 Lưu

Cho hình chóp S.ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD.

Tìm giao tuyến của hai mặt phẳng

a) (SBM) và (SCD);

b) (ABM) và (SCD);

c) (ABM) và (SAC).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD. Tìm giao tuyến của hai mặt phẳng (ảnh 1)

a) Ta có ngay S, M là hai điểm chung của (SBM) và (SCD) nên (SBM) ∩ (SCD) = SM

b) M là điểm chung thứ nhất của (AMB) và (SCD)

Gọi I = AB ∩ CD

Ta có: I AB I (ABM)

Mặt khác: I CD I (SCD)

Nên (AMB) ∩ (SCD) = IM.

c) Gọi J = IM ∩ SC.

Ta có: J SC J (SAC) và J IM J (ABM).

Hiển nhiên A (SAC) và A (ABM)

Vậy (SAC) ∩ (ABM) = AJ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.   a) Tìm giao điểm của AM và (SBD).   b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).  (ảnh 1)

a) Gọi AC ∩ BD = O

Khi đó O(SAC) và O (SBD)

O (SAC) ∩ (SBD)

Lại có S (SAC) ∩ (SBD)

Do đó (SAC) ∩ (SBD) = SO

Gọi AM ∩ SO = P

Khi đó P AM và P SO, SO (SBD)

Vậy AM ∩ (SBD) = P

b) Gọi AN ∩ BD = Q

Khi đó Q (AMN) và Q(SBD)

Lại có P (AMN) và P (SBD)

Vậy (AMN) ∩ (SBD) = PQ

Gọi PQ ∩ SD = R

Suy ra R (AMN) và R SD

Vậy SD ∩ (AMN) = R.

Lời giải

Cho hình 20 biết a // AB, b // AB và góc man = 100 độ. Tính góc n1  (ảnh 2)

Ta có: a // AB và b // AB nên a // b

Vì a // AB nên MAB^+M1^=180°

M1^=120° (vì đối đỉnh)

Nên: MAB^=180°M1^=180°120°=60°

Lại có: MAN^=MAB^+BAN^=100°

Suy ra: BAN^=100°60=40°

Lại có: AB // b nên: BAN^=ANb^=40°

Mà ANb^=N1^

Vậy N1^=40°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP