Câu hỏi:
11/07/2024 698Cho hình chóp S.ABCD, AB và CD không song song và M là trung điểm của SC.
a, Tìm N = SD ∩ (MAB).
b, Gọi O = AC ∩ BD. Chứng minh SO, AM, BN đồng quy.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) + Trong mp(ABCD), AB cắt CD tại E.
E ∈ AB ⊂ (MAB) ⇒ E ∈ (MAB) ⇒ ME ⊂ (MAB)
E ∈ CD ⊂ (SCD) ⇒ E ∈ (SCD)
Mà M ∈ SC ⊂ (SCD)
⇒ ME ⊂ (SCD).
+ Trong mp(SCD), EM cắt SD tại N.
Ta có:
N ∈ SD
N ∈ EM ⊂ mp(MAB)
Vậy N = SD ∩ mp(MAB)
b) Chứng minh SO, MA, BN đồng quy:
+ Trong mặt phẳng (SAC) : SO và AM cắt nhau.
+ Trong mp(MAB) : MA và BN cắt nhau
+ Trong mp(SBD) : SO và BN cắt nhau.
+ Qua AM và BN xác định được duy nhất (MAB), mà SO không nằm trong mặt phẳng (MAB) nên AM; BN; SO không đồng phẳng.
Vậy SO, MA, BN đồng quy.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD. M là một điểm trên cạnh SC.
a) Tìm giao điểm của AM và (SBD).
b) Gọi N là một điểm trên cạnh BC. Tìm giao điểm của SD và (AMN).
Câu 3:
cho các tập hợp A = (2; +∞) và B =[m2 - 7; +∞) với m > 0. Tìm m để A\B là một khoảng có độ dài bằng 16.
Câu 5:
Cho Hình 21. Biết x // z, y // z và góc .
a) Tính góc .
b) Tính góc.
Câu 6:
Cho chóp S.ABCD. M, N lần lượt là trung điểm của SB, SD. Tìm giao điểm của (AMN) và SC.
về câu hỏi!