Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại C, BC= a, cạnh SA vuông góc với đáy, mặt phẳng (SBC) tạo với (SAB) góc 30 độ. Thể tích khối chóp đã cho.
Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại C, BC= a, cạnh SA vuông góc với đáy, mặt phẳng (SBC) tạo với (SAB) góc 30 độ. Thể tích khối chóp đã cho.
Quảng cáo
Trả lời:


Từ C kẻ CH⊥AB tại H. Từ H kẻ HK⊥SB tại K.
+ Giao tuyến của hai mặt phẳng (SBC) và (SAB) là SB.
mà CK ∈ (SBC)
Do đó góc giữa hai mặt phẳng (SBC) và (SAB) là
Tam giác SBC vuông tại C có góc nên:
+ Tam giác SBC vuông tại C có CK là đường cao nên
Suy ra:
+ Tam giác CKH vuông tại H (vì CH⊥(SAB)) và nên:
+ Tam giác ABC vuông tại C và có CH là đường cao nên
Suy ra:
+ Tam giác ABC vuông tại C nên
+ Tam giác SAB vuông tại nên
Thể tích khối chóp làHot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A = sin(a – b) = sina.cosb – sinb.cosa =
Lời giải

a) Trong (ABCD) gọi O = AC ∩ BD. Suy ra SO ⊂ (SAC), SO ⊂ (SBD)
Trong (SAC) gọi I = AM ∩ SO ta có:
I ∈ AM, I ∈ SO ⊂ (SBD)
Nên I ∈ (SBD)
Suy ra: I = AM ∩ (SBD)
b) Trong (SBD) gọi P = BI ∩ SD ta có:
P ∈ SD
P ∈ BI ⊂ (ABM) nên P ∈ (ABM)
Suy ra: P = SD ∩ (ABM)
Ta có: I là trọng tâm tam giác SAC nên
Xét tam giác SBD có SO là trung tuyến ứng với cạnh BD,
Nên I là trọng tâm tam giác SBD
Suy ra: BI là trung tuyến của tam giác SBD ứng với cạnh SD
Mà BI ∩ SD = P nên P là trung điểm của SD.
c) Trong (SBD) gọi K = MN ∩ BP ta có:
K ∈ MN
K ∈ BP ⊂ (SBD) nên K ∈ (SBD)
Vậy K = MN ∩ (SBD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.