Câu hỏi:

24/02/2024 474

Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại C, BC= a,  BSC^=60° cạnh SA vuông góc với đáy, mặt phẳng (SBC) tạo với (SAB) góc 30 độ. Thể tích khối chóp đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại C, BC= a,  cạnh SA vuông góc với đáy, mặt phẳng (SBC) tạo với (SAB) góc 30 độ. Thể tích khối chóp đã cho. (ảnh 1)

Từ C kẻ CH⊥AB tại  H. Từ H kẻ HK⊥SB tại K.

+ Giao tuyến của hai mặt phẳng (SBC) và (SAB) là SB.

HKSABHKSBCHSBHKSBSBCK

mà CK ∈ (SBC)

Do đó góc giữa hai mặt phẳng (SBC) và (SAB) là CKH^=30°

BCACBCSABCSC

Tam giác SBC vuông tại C có góc BSC^=60° nên: SC=a3;SB=2a33

+ Tam giác SBC vuông tại C có CK là đường cao nên 1CK2=1CS2+1CB2=1a2+3a2=4a2

Suy ra: CK=a2

+ Tam giác CKH vuông tại  H (vì CH⊥(SAB)) và CKH^=30° nên: CH=CK.sin30°=a4

+ Tam giác ABC vuông tại C và có CH là đường cao nên 1CH2=1CA2+1CB21CA2=1CH21CB2=16a21a2=15a2

Suy ra: AC=a15

+ Tam giác ABC vuông tại C nên AB=AC2+BC2=4a15

+ Tam giác SAB vuông tại nên SA=SB2AB2=4a2316a215=2a15

Thể tích khối chóp là V=13.SA.SABC=16.SA.AC.BC=16.2a15.a15.a=a345

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC. a) Tìm giao điểm I của AM và (SBD).  (ảnh 1)

a) Trong (ABCD) gọi O = AC ∩ BD. Suy ra SO (SAC), SO (SBD)

Trong (SAC) gọi I = AM ∩ SO ta có:

I AM, I SO (SBD)

Nên I (SBD)

Suy ra: I = AM ∩ (SBD)

b) Trong (SBD) gọi P = BI ∩ SD ta có:

P SD

P BI (ABM) nên P (ABM)

Suy ra: P = SD ∩ (ABM)

Ta có: I là trọng tâm tam giác SAC nên SISO=23

Xét tam giác SBD có SO là trung tuyến ứng với cạnh BD, SISO=23

Nên I là trọng tâm tam giác SBD

Suy ra: BI là trung tuyến của tam giác SBD ứng với cạnh SD

Mà BI ∩ SD = P nên P là trung điểm của SD.

c) Trong (SBD) gọi K = MN ∩ BP ta có:

K MN

K BP (SBD) nên K (SBD)

Vậy K = MN ∩ (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay