Câu hỏi:

11/07/2024 3,056

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là trung điểm của cạnh SD, N thuộc cạnh SA sao cho NS = 2NA. Gọi I là giao điểm của mp (OMN) và cạnh CD. Tính ICID

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là trung điểm của cạnh SD, N thuộc cạnh SA sao cho NS = 2NA. Gọi I là giao điểm của mp (OMN) và cạnh CD. Tính  (ảnh 1)

Chọn CD (SCD)

Ta có M (OMN) ∩ (SCD)

Trong (SAC), kẻ ON cắt Sc tại K

Suy ra K SC (SCD)

K (SCD) ∩ (OMN)

Ta được: MK = (OMN) ∩ (SCD)

Trong (SCD), MK ∩ CD = I

I = (OMN) ∩ CD

Áp dụng định lý Menelaus đối với SCD cho 3 điểm K, M, I thẳng hàng ta được:

ICID.DMMS.SKKC=1ICID.1.SKKC=1ICID=SKKC

Tiếp tục áp dụng định lý Menelaus cho SAC với K, N, O thẳng hàng ta được:

KSKC.COOA.NANS=1KSKC.1.12=1KSKC=ICID=12 (CO = AO do O là tâm hình bình hành ABCD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho sina=817;tanb=512 và a, b là các góc nhọn. Tính A = sin(a – b).

Xem đáp án » 13/07/2024 28,713

Câu 2:

Cho hình thoi ABCD có cạnh bằng a, BAD^=30°. Tính diện tích hình thoi ABCD.

Xem đáp án » 12/07/2024 20,880

Câu 3:

Cho hình chóp S.ABCD với ABCD có các cạnh đối diện không song song với nhau và M là một điểm trên SA. Tìm giao điểm của đường thẳng và MC và (SBD).

Xem đáp án » 12/07/2024 20,333

Câu 4:

Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song

song với MP, cắt đường thẳng PQ tại K. Chứng minh:

a) MNPQ là hình thang cân.

b) ∆MPQ = ∆NQP.

c) Tam giác NKQ cân.

Xem đáp án » 12/07/2024 19,861

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC.

a) Tìm giao điểm I của AM và (SBD).

b) Tìm giao điểm P của SD và (ABM). Chứng minh rằng P là trung điểm của SD.

c) Gọi N là điểm tùy ý trên cạnh AB. Tìm giao điểm K của MN và (SBD).

Xem đáp án » 12/07/2024 16,589

Câu 6:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1, BC = 2, AA' = 2. Khoảng cách giữa hai đường thẳng AD' và DC' bằng? (tham khảo hình)

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1, BC = 2, AA' = 2. Khoảng cách giữa hai đường thẳng AD' và DC' bằng? (tham khảo hình) (ảnh 1)

Xem đáp án » 12/07/2024 14,335

Câu 7:

Cho khối chóp S.ABCD có đáy ABCD là hình bình hành, SA = SB = SC = AC = a, SB tạo với mặt phẳng (SAC) một góc 30°. Tính thể tích khối chóp.

Xem đáp án » 12/07/2024 11,450

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store