Câu hỏi:

12/07/2024 1,079 Lưu

Cho hình thang cân ABCD (AB // CD, AB < CD), BC = 15cm, đường cao BH = 12cm, DH = 16cm. Chứng minh BD vuông góc với BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang cân ABCD (AB // CD, AB < CD), BC = 15cm, đường cao BH = 12cm, DH = 16cm. Chứng minh BD vuông góc với BC. (ảnh 1)

Áp dụng định lý Pitago cho tam giác BHD ta có:

BD2 = DH2 + BH2 = 162 + 122 BD = 20.

Áp dụng định lý Pitago cho tam giác vuông BHC ta có:

HC2 = BC2− BH2 = 152 − 122 HC = 9.

Tam giác BDC có BD2 + BC2 = 202 + 152 = 625;

DC2 = (16 + 9)2 = 625.

Suy ra BD2 + BC2 = DC2.

Từ đó theo định lý Pitago đảo, tam giác DBC vuông tại B, hay DB BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD với ABCD  có các cạnh đối diện không song song với nhau và M là một điểm trên SA. Tìm giao điểm của đường thẳng và MC và (SBD). (ảnh 1)

Trong (ABCD) gọi I = AC ∩ BD

Ta có: I AC (SAC)

S (SAC)

Suy ra: SI (SAC)

Trong (SAC) gọi K = SI ∩ MC ta có:

K MC

S SI (SAC)

Suy ra: K = MC ∩ (SAC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP