Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD).
Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD).
Quảng cáo
Trả lời:

Có N ∈ CD ⊂ (ACD)
N ∈ (GMN)
Suy ra: N ∈ (ACD) ∩ (GMN) (1)
Trong mp(BCD) gọi H là giao điểm của NG và BC
Trong mp(ABC) gọi I là giao điểm AC và HM
Suy ra: I ∈ CA ⊂ (ACD)
I ∈ HM ⊂ (GMN)
Suy ra: I ∈ (ACD) ∩ (GMN) (2)
Từ (1) và (2) suy ra giao tuyến của (CAD) và (GMN) là NI.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A = sin(a – b) = sina.cosb – sinb.cosa =
Lời giải

Trong (ABCD) gọi I = AC ∩ BD
Ta có: I ∈ AC ⊂ (SAC)
S ∈ (SAC)
Suy ra: SI ⊂ (SAC)
Trong (SAC) gọi K = SI ∩ MC ta có:
K ∈ MC
S ∈ SI ⊂ (SAC)
Suy ra: K = MC ∩ (SAC).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.