Câu hỏi:

11/07/2024 522 Lưu

Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD). (ảnh 1)

Có N CD (ACD)

N (GMN)

Suy ra: N (ACD) ∩ (GMN) (1)

Trong mp(BCD) gọi H là giao điểm của NG và BC

Trong mp(ABC) gọi I là giao điểm AC và HM

Suy ra: I CA (ACD)

I HM (GMN)

Suy ra: I (ACD) ∩ (GMN) (2)

Từ (1) và (2) suy ra giao tuyến của (CAD) và (GMN) là NI.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD với ABCD  có các cạnh đối diện không song song với nhau và M là một điểm trên SA. Tìm giao điểm của đường thẳng và MC và (SBD). (ảnh 1)

Trong (ABCD) gọi I = AC ∩ BD

Ta có: I AC (SAC)

S (SAC)

Suy ra: SI (SAC)

Trong (SAC) gọi K = SI ∩ MC ta có:

K MC

S SI (SAC)

Suy ra: K = MC ∩ (SAC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP