Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau:
![Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau: Có bao nhiêu giá trị nguyên của tham số m để phương trình f[f(|x+1|) - 2] = m (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/02/10-1708785591.png)
Có bao nhiêu giá trị nguyên của tham số m để phương trình có 10 nghiệm phân biệt thuộc đoạn [-3;3]?
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số m để phương trình có 10 nghiệm phân biệt thuộc đoạn [-3;3]?
Câu hỏi trong đề: Ôn thi Tốt nghiệp THPT môn Toán (Đề 13) !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Đặt . Vì suy ra .
Với mỗi giá trị cho ta 2 nghiệm .
Với mỗi giá trị cho ta 1 nghiệm .
Phương trình trở thành .
Xét hàm trên đoạn [0;4]
.
Do đó, hàm số có tối đa 3 cực trị trên đoạn [0;4].
Suy ra phương trình có tối đa 4 nghiệm t.
Giả sử cả 4 nghiệm t đó đều thuộc (0;2] thì cho tối đa 8 nghiệm x .
Theo yêu cầu bài toán ra 10 nghiệm nên không có m thỏa mãn yêu cầu.
Vậy không có giá trị nào của m thỏa mãn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Chọn ngẫu nhiên 2 số khác nhau từ 25 thẻ nên .
Gọi A là biến cố: “hai số có tổng là một số chẵn”.
- TH1: Chọn 2 số đều lẻ trong tổng số 13 số lẻ: cách chọn
- TH2: Chọn 2 số đều chẵn trong tổng số 12 số chẵn: cách chọn
.
Xác suất .
Lời giải
Đáp án đúng là: A
Ta có: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.