Câu hỏi:

24/02/2024 649 Lưu

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong ở hình bên dưới.

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong ở hình bên dưới.   Gọi x1,x2 lần lượt là hai điểm cực trị thỏa mãn x2 = x1 +2 (ảnh 1)

Gọi x1,x2  lần lượt là hai điểm cực trị thỏa mãn x2=x1+2  fx13fx2=0.  và đồ thị luôn đi qua Mx0;fx0, trong đó x0=x11; gx  là hàm số bậc hai có đồ thị qua 2 điểm cực trị của đồ thị hàm số y = f(x) và điểm M. Tính tỉ số S1S2(S1 S2  lần lượt là diện tích hai hình phẳng được tạo bởi đồ thị hai hàm fx,gx  như hình vẽ).

A. 429

B. 532

C. 733

D. 635

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Khi ta tịnh tiến đồ thị sao cho x0=0  khi đó diện tích hình phẳng không thay đổi.

x1=1;x2=3 đặt fx=ax3+bx2+cx+d;   gx=mx2+nx+q

f'x=3ax2+2bx+c

.

Vì hàm số y = f(x) đạt cực trị tại x1=1;x2=3f13f3=0  nên ta có hệ phương trình:

3a+2b+c=027a+6b+c=080a+26b+8c+2d=0b=6ac=9ad=2a

fx=ax36x2+9x+2

Mà hai đồ thị giao nhau tại 3 điểm nên ta có hệ phương trình:

g0=f0g1=f1g2=f2q=d=2am=2an=6agx=a2x2+6x+2

 


Khi đó S1=a.01x34x2+3x dx=5a12;

S2=a.13x34x2+3x dx=8a3

.

Do đó S1S2=532 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Chọn ngẫu nhiên 2 số khác nhau từ 25 thẻ nên Ω=C252 .

Gọi A là biến cố: “hai số có tổng là một số chẵn”.

- TH1: Chọn 2 số đều lẻ trong tổng số 13 số lẻ: C132  cách chọn

- TH2: Chọn 2 số đều chẵn trong tổng số 12 số chẵn: C122  cách chọn

A=C132+C122.

Xác suất PA=AΩ=C132+C122C252=1225 .

Câu 2

A. 0;9

B. 0;+

C. 9;+

D. ;9

Lời giải

Đáp án đúng là: A

Ta có: log3x<2x>0x<320<x<9 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. y'=1x1

B. y'=1x22x+1

C. y'=2x1

D. y'=2x2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP