Câu hỏi:

24/02/2024 4,716

Trong không gian Oxyz, cho hai điểm A (2;1;3), B (6;5;5). Xét khối nón (N) ngoại tiếp mặt cầu đường kính ABB là tâm đường tròn đáy khối nón. Gọi S là đỉnh của khối nón (N). Khi thể tích khối nón (N) nhỏ nhất thì mặt phẳng qua đỉnh S và song song với mặt phẳng chứa đường tròn đáy của (N) có phương trình 2x + by + cz + d = 0. Tính T = b + c + d.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Mặt cầu (S) đường kính AB có tâm I (4;3;4), bán kính R=AB2=3 .

Giả sử thiết diện qua trục hình nón là tam giác SMN.

Trong không gian Oxyz, cho hai điểm A (2;1;3), B (6;5;5). Xét khối nón (N) ngoại tiếp mặt cầu đường kính AB có B là tâm đường tròn  (ảnh 1)

Gọi r, h  lần lượt là bán kính đáy và chiều cao của hình nón (h > 6).

là tâm đường tròn nội tiếp của tam giác SMN ta có: R=SSMNPSMN

3=12MN.SB12SM+SN+MN 3=r.hr+r2+h2 3r+r2+h2=rh r2=9hh6.

Thể tích khối nón là V=13πr2h=π3.9h2h6=fh .

f'h=3π.h212hh62

.

f'h=0h=0h=12.

Bảng biến thiên

Trong không gian Oxyz, cho hai điểm A (2;1;3), B (6;5;5). Xét khối nón (N) ngoại tiếp mặt cầu đường kính AB có B là tâm đường tròn  (ảnh 2)

đạt giá trị nhỏ nhất h=12 .

Ta có IS=3BIS2;3;1 .

Phương trình mặt phẳng (P) qua S (-2;-3;1), có vectơ pháp tuyến AB=22;2;1  2x+2y+z+9=0 .

Suy ra b = 2; c = 1; d = 9.

Vậy T = b + c + d = 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chọn ngẫu nhiên hai số khác nhau từ 25 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chn là

Xem đáp án » 24/02/2024 18,589

Câu 2:

Tập nghiệm của bất phương trình log3x<2 

Xem đáp án » 24/02/2024 8,895

Câu 3:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên dưới.

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên dưới.   Số nghiệm thực của phương trình  |f(x^4 - 2x^2)|=2 (ảnh 1)

Số nghiệm thực của phương trình fx42x2=2  

Xem đáp án » 24/02/2024 6,024

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA vuông góc với đáy và SA=a6 . Góc giữa hai mặt phẳng (SBD) (ABCD) bằng

Xem đáp án » 24/02/2024 5,208

Câu 5:

Trên tập hợp số phức, xét phương trình z26z+m=0  m  là tham số thực). Gọi m0  là một giá trị nguyên của m  đ phương trình đó có hai nghiệm phân biệt z1,z2  thỏa mãn z1.z1¯=z2.z2¯ . Trong khoảng (0;20) có bao nhiêu giá trị nguyên m0 ?

Xem đáp án » 24/02/2024 4,700

Câu 6:

Trong không gian Oxyz, cho hai vec tơ u=1;1;0  v=2;0;1 . Tính độ dài u+2v .

Xem đáp án » 24/02/2024 4,274

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn