Câu hỏi:

13/07/2024 659

Cho tam giác ABC cân tại A đường trung trực của AB cắt BC tại K. Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác ACK.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A đường trung trực của AB cắt BC tại K. Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác ACK. (ảnh 1)

Các tam giác cân ABC, KBA có chung góc ở đáy B nên CAB^=AKB^

tức CAB^=AKC^

Ta có CAB^=12sdAC

Suy ra: CAB^=AKC^=12sdAC

Từ đó AB là tiếp tuyến của đường tròn (O).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC. a) Tìm giao điểm I của AM và (SBD).  (ảnh 1)

a) Trong (ABCD) gọi O = AC ∩ BD. Suy ra SO (SAC), SO (SBD)

Trong (SAC) gọi I = AM ∩ SO ta có:

I AM, I SO (SBD)

Nên I (SBD)

Suy ra: I = AM ∩ (SBD)

b) Trong (SBD) gọi P = BI ∩ SD ta có:

P SD

P BI (ABM) nên P (ABM)

Suy ra: P = SD ∩ (ABM)

Ta có: I là trọng tâm tam giác SAC nên SISO=23

Xét tam giác SBD có SO là trung tuyến ứng với cạnh BD, SISO=23

Nên I là trọng tâm tam giác SBD

Suy ra: BI là trung tuyến của tam giác SBD ứng với cạnh SD

Mà BI ∩ SD = P nên P là trung điểm của SD.

c) Trong (SBD) gọi K = MN ∩ BP ta có:

K MN

K BP (SBD) nên K (SBD)

Vậy K = MN ∩ (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay