Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, ta vẽ đường thẳng vuông góc với BC, cắt các cạnh AB, AC lần lượt tại E, F. Vẽ các hình chữ nhật BDEH, CDFK. Chứng minh rằng A là trung tâm điểm của HK.
Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, ta vẽ đường thẳng vuông góc với BC, cắt các cạnh AB, AC lần lượt tại E, F. Vẽ các hình chữ nhật BDEH, CDFK. Chứng minh rằng A là trung tâm điểm của HK.
Quảng cáo
Trả lời:
Gọi I, O lần lượt là tâm của BDEH, CDFK
Ta có:
Mà (do tam giác ABC cân tại A)
Nên:
Do đó: BE // DK, DH // CA
Suy ra: AIDO là hình bình hành
Nên: AO = ID
Mà HI = ID nên AO = HI
Lại có AO // HI và AIHO là hình bình hành nên AH // IO và AH = IO (1)
Chứng minh tương tự: AIOK là hình bình hành nên AK // io, AK = IO (2)
Từ (1) và (1): Suy ra: A, H, K thằng hàng và AH = AK.
Vậy A là trung điểm của HK.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Trong (ABCD) gọi O = AC ∩ BD. Suy ra SO ⊂ (SAC), SO ⊂ (SBD)
Trong (SAC) gọi I = AM ∩ SO ta có:
I ∈ AM, I ∈ SO ⊂ (SBD)
Nên I ∈ (SBD)
Suy ra: I = AM ∩ (SBD)
b) Trong (SBD) gọi P = BI ∩ SD ta có:
P ∈ SD
P ∈ BI ⊂ (ABM) nên P ∈ (ABM)
Suy ra: P = SD ∩ (ABM)
Ta có: I là trọng tâm tam giác SAC nên
Xét tam giác SBD có SO là trung tuyến ứng với cạnh BD,
Nên I là trọng tâm tam giác SBD
Suy ra: BI là trung tuyến của tam giác SBD ứng với cạnh SD
Mà BI ∩ SD = P nên P là trung điểm của SD.
c) Trong (SBD) gọi K = MN ∩ BP ta có:
K ∈ MN
K ∈ BP ⊂ (SBD) nên K ∈ (SBD)
Vậy K = MN ∩ (SBD).
Lời giải
Trong (ABCD) gọi I = AC ∩ BD
Ta có: I ∈ AC ⊂ (SAC)
S ∈ (SAC)
Suy ra: SI ⊂ (SAC)
Trong (SAC) gọi K = SI ∩ MC ta có:
K ∈ MC
S ∈ SI ⊂ (SAC)
Suy ra: K = MC ∩ (SAC).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
