Câu hỏi:
25/02/2024 225Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O; R). Dựng đường tròn (K) đường kính BC cắt các cạnh AB, AC lần lượt tại các điểm F, E. Gọi H là giao điểm của BE và CF.
a) Chứng minh rằng AF.AB = AE.AC và AH vuông góc BC.
b) Chứng minh OA vuông góc EF.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: (góc nội tiếp chắn nửa đường tròn (O))
Suy ra: BE, CF là hai đường cao của tam giác ABC
⇒ H là trực tâm của tam giác ABC
AH là đường cao của ABC nên AH ⊥ BC tại S
b) Vẽ tiếp tuyến Ax của (O)
Có: (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung AB)
(vì cùng bù )
⇒ mà hai góc ở vị trí so le trong nên Ax // EF
Ta lại có OA ⊥ Ax (Ax là tiếp tuyến của (O)) ⇒ OA ⊥ EF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho hình chóp S.ABCD với ABCD có các cạnh đối diện không song song với nhau và M là một điểm trên SA. Tìm giao điểm của đường thẳng và MC và (SBD).
Câu 4:
Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song
song với MP, cắt đường thẳng PQ tại K. Chứng minh:
a) MNPQ là hình thang cân.
b) ∆MPQ = ∆NQP.
c) Tam giác NKQ cân.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC.
a) Tìm giao điểm I của AM và (SBD).
b) Tìm giao điểm P của SD và (ABM). Chứng minh rằng P là trung điểm của SD.
c) Gọi N là điểm tùy ý trên cạnh AB. Tìm giao điểm K của MN và (SBD).
Câu 6:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1, BC = 2, AA' = 2. Khoảng cách giữa hai đường thẳng AD' và DC' bằng? (tham khảo hình)
Câu 7:
Cho khối chóp S.ABCD có đáy ABCD là hình bình hành, SA = SB = SC = AC = a, SB tạo với mặt phẳng (SAC) một góc 30°. Tính thể tích khối chóp.
về câu hỏi!