Câu hỏi:

12/07/2024 753

Cho ΔABC cố định, các điểm D và E di động trên các cạnh tương ứng là AB và AC sao cho ADBD=CEEA. Chứng minh rằng: Trung điểm M của đoạn thẳng DE nằm trên 1 đoạn thẳng cố định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ΔABC cố định, các điểm D và E di động trên các cạnh tương ứng là AB và AC sao cho  ad/db = ce/ea (ảnh 1)

Ta có: ADBD=CEEAADAB=ECCA

Từ E kẻ đường thẳng song song với AB cắt BC tại F (EF // BC)

Theo định lý ta-lét ta có: EFAB=CECA

Suy ra: EFAB=ADABEF=AD

Lại có: EF // AB nên EF // AD

Suy ra: ADFE là hình bình hành

Mà ADFE là hình bình hành có M là trung điểm của đường chéo DE nên M cũng là trung điểm của AF

Gọi I, J lần lượt là trung điểm AB, AC

Suy ra: IJ là đường trung bình của tam giác ABC

IJ // BC (1)

Tam giác ABF có I là trung điểm AB, M là trung điểm AF nên IM là đường trung bình của tam giác ABF

IM // BC (2)

Từ (1) và (2): I, M, J thẳng hàng

Vậy M nằm trên IJ

Mà tam giác ABC cố định, nên IJ cố định, vậy M cố định.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC. a) Tìm giao điểm I của AM và (SBD).  (ảnh 1)

a) Trong (ABCD) gọi O = AC ∩ BD. Suy ra SO (SAC), SO (SBD)

Trong (SAC) gọi I = AM ∩ SO ta có:

I AM, I SO (SBD)

Nên I (SBD)

Suy ra: I = AM ∩ (SBD)

b) Trong (SBD) gọi P = BI ∩ SD ta có:

P SD

P BI (ABM) nên P (ABM)

Suy ra: P = SD ∩ (ABM)

Ta có: I là trọng tâm tam giác SAC nên SISO=23

Xét tam giác SBD có SO là trung tuyến ứng với cạnh BD, SISO=23

Nên I là trọng tâm tam giác SBD

Suy ra: BI là trung tuyến của tam giác SBD ứng với cạnh SD

Mà BI ∩ SD = P nên P là trung điểm của SD.

c) Trong (SBD) gọi K = MN ∩ BP ta có:

K MN

K BP (SBD) nên K (SBD)

Vậy K = MN ∩ (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP