Câu hỏi:

27/02/2024 3,076

Cho hàm số y = f(x)  f'x=xx+1x22mx+1,x  với m  là tham số thực. Hỏi có tất cả bao nhiêu số nguyên m  không vượt quáq 2023 cho hàm số gx=fx21  có 7 điểm cực trị?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A.

gx=fx21g'x=2xf'x21=2xx21x2x2122mx21+1

Ta có x=0x21=0x2=0x2122mx21+1=0x=0x=±1x2122mx21+1=0 .

Để hàm số gx=fx21  có 7 điểm cực trị thì phương trình x2122mx21+1=0  phải có 4 đơn nghiệm phân biệt khác x = 0 , x=±1 .

Xét phương trình x2122mx21+1=0

Đặt t=x21 , khi đó ta được phương trình t22mt+1=0  với t1 .

Với t>1  ta có hai nghiệm x ,

Với t = -1  ta có nghiệm x = 0 ,

Với t < -1  phương trình vô nghiệm.

Nên để x2122mx21+1=0  có 4 đơn nghiệm phân biệt khi và chỉ khi phương trình t22mt+1=0  có hai nghiệm phân biệt 0t>1 .

Ta có t22mt+1=02m=t+1t .

Xét hàm số ht=t+1t , ta có h't=11t2=0t=±1 .

Bảng biến thiên:

Cho hàm số y = f(x)  có  f'(x) = x(x+1)(x^2-2mx+1), với mọi x thuộc R với m  là tham số thực. Hỏi có tất cả bao nhiêu số nguyên m  không vượt quáq 2023 (ảnh 1)

Từ bảng biến thiên, phương trình t22mt+1=0  có hai nghiệm phân biệt 0t>1   khi m > 2 .

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Cho hàm số y = f(x) có bảng biến thiên như sau:   Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 26/02/2024 19,269

Câu 2:

Tập nghiệm của bất phương trình log2x<0  

Xem đáp án » 26/02/2024 10,561

Câu 3:

Trong không gian Oxyz, cho hai điểm A(1;1;-2), B(2;2;1). VecAB  có tọa độ là

Xem đáp án » 26/02/2024 9,990

Câu 4:

Cho hàm số fx=2x4+ax3+bx2+cx+d a,b,c,d  có ba điểm cực trị là -1, 1 và 3. Gọi y = g(x) là hàm số bậc hai có đồ thị đi qua ba điểm cực trị của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f(x)y = g(x) bằng

Xem đáp án » 27/02/2024 7,519

Câu 5:

Cho hàm f(x) có đạo hàm liên tục trên [2;3] đồng thời f(2) = 2 , f(3) = 5. Tính 23f'xdx  bằng

Xem đáp án » 26/02/2024 7,344

Câu 6:

Cho hàm số y = f(x) xác định và liên tục trên  có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f(x) trên đoạn [-2;2].

Cho hàm số y = f(x) xác định và liên tục trên R có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f(x) (ảnh 1)

Xem đáp án » 26/02/2024 6,665

Câu 7:

Cho hàm số y = f(x) có bng biến thiên như sau:

Cho hàm số y = f(x) có bảng biến thiên như sau:   Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là: (ảnh 1)

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Xem đáp án » 26/02/2024 5,942
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua