Câu hỏi:

27/02/2024 1,768

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD. Khẳng định nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD (ảnh 1)

Tam giác SAC cân tại S có SO là trung tuyến.

Do đó, SO cũng là đường cao nên SO vuông góc với AC.

Tam giác SBD cân tại S có SO là trung tuyến.

Do đó, SO cũng là đường cao nên SO vuông góc với BD.

Từ đó suy ra: SO (ABCD).

Do ABCD là hình thoi nên CD không vuông góc với BD. Do đó, CD không vuông góc với (SBD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt bên SAB là tam giác đều, SCD là tam giác vuông cân đỉnh S. (ảnh 1)

Ta có: ∆SAB đều cạnh a nên  SI=a32

Tứ giác IBCJ là hình chữ nhật nên IJ = BC = a

∆SCD là tam giác vuông cân đỉnh S SJ =  CD2a2

Do đó, SJ2 + SI2 = IJ2 = a2 ∆SIJ vuông tại S.

Do ∆SCD cân tại S nên SJ CD

Do AB // CD SJ (SAB)

Chứng minh tương tự ta có SI (SCD)

SI CD

Mà CD IJ CD (SIJ) CD SH

Do SH IJ SH (ABCD).

Lời giải

Đáp án đúng là: B

Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, điểm I và H lần lượt là trung điểm của AB và BC. (ảnh 1)
 

Do điểm M thuộc đường trung tuyến CI và MC = 2MI

M là trọng tâm tam giác ABC nên AH giao CI tại M

Ta có:  NANS=MAMH=2 

Do đó, MN // SH

Mặt khác, SH (ABC) nên MN (ABC). Suy ra MN vuông góc với AB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tứ diện ABCD có AB = AC và DB = DC. Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay