Câu hỏi:

27/02/2024 1,316

bao nhiêu số nguyên dương y để tồn tại số thực x > 1 thỏa mãn

x2xy+log2xy=xy4+15xy30+10y?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Đầu tiên ta có phương trình sau: x2xy+log2xy=xy4+15xy30+10y(*)

2xy+log2xy=y4+15y3010yx2xy+log2xy+30x10yx=y4+15y (1)

Giải thích: ta cô lập vế phải là một hàm theo biến y luôn đồng biến trên 0;+ (f'y=4y3+15>0 y0;+).

Tiếp theo ta khảo sát hàm số gx=2xy+log2xy+30x10yx trên 1;+.

Ta có:g'x=y2xyln2+1xln230x2+10yx2.

Thế y=3 vào ta có g'3=8x+1ln21xln2>64ln21ln2>0,x>1.

Suy ra y3 thì g'x>0, kéo theo đó ta có được:

gx>g1=2y+log2y10y+30limx+gx=+.

Khi ấy để (*)có nghiệmx>1 thì cần có:

2xy+log2xy+30x10yx>2y+log2y10y+30 (2)

Từ (1) và (2) ta suy ra 2y+log2y10y+30<y4+15y

2y+log2y25y+30y4<0,  y3 (3)

Cho vế trái (3) bằng không giải ra nghiệm (shift SOLVE)y16,01 (**), khi đó ta có ý tưởng sau:

Giả sử đảo chiều (3), ta có: 2y+log2y10y+30>y4+15y 

2y+log2y25y+30y4>0 (4).

Tới đây ta sẽ chứng minh bất phương trình (4) luôn đúng với mọi y17.

Xét hàm số hy=2y+log2y25y+30y4 h16=366<0;h17>0 nên suy ra hy<0,y<17 tức hy>0,y17.

Suy ra bất phương trình (4) luôn đúng với mọi y17 tức bất phương trình (3) luôn đúng với mọi 3y17.

Do (**) nên ta thử từng giá trị y:317 theo thứ tự từ lớn xuống.

Nhận thấy y = 17 không thỏa nên 3y<17

Mà đề cho y+ nên ta thử hai giá trị còn lại lần lượt là y1;2, nhận thấy hai giá trị này đều thỏa nên suy ra 1y<17 tức y1;2;...;15;16. Vậy có tất cả 16 giá trị nguyên y thỏa mãn đề bài.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông cạnh a, SAABCD SA=a33 (tham khảo hình bên dưới). Khoảng cách từ điểm A đến mặt phẳng (SCD)

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông cạnh a, SA vuông góc (ABCD) và SA = a căn 3/3 (tham khảo hình bên dưới). Khoảng cách từ điểm A  (ảnh 1)

Xem đáp án » 27/02/2024 99,679

Câu 2:

Cho hình chóp S.ABC có SAABC; tam giác ABC đều cạnh a và SA = a. Tìm góc giữa SC và mặt phẳng (ABC).

Cho hình chóp S.ABC có SA vuông góc (ABC) ; tam giác ABC đều cạnh a và SA = a. Tìm góc giữa SC và mặt phẳng (ABC). (ảnh 1)

Xem đáp án » 27/02/2024 31,614

Câu 3:

Tập nghiệm của bất phương trình logx2<1 

Xem đáp án » 27/02/2024 16,298

Câu 4:

Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn z2i=2023 là một đường tròn. Tâm của đường tròn đó có tọa độ là

Xem đáp án » 27/02/2024 8,647

Câu 5:

Cho hàm số y=ax+bcx+d đồ thi là đường cong trong hình bên.

Cho hàm số y = ã+b/cx+d có đồ thi là đường cong trong hình bên.   Toạ độ giao điểm của đồ thị hàm số đã cho và trục tung là: (ảnh 1)

Toạ độ giao điểm của đồ thị hàm số đã cho và trục tung là:

Xem đáp án » 27/02/2024 6,822

Câu 6:

Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Xem đáp án » 27/02/2024 6,195

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu

S:x2+y2+z22x+2y4z2=0.

Tính bán kính r của mặt cầu.

Xem đáp án » 27/02/2024 4,971
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua