Câu hỏi:

27/02/2024 1,369

bao nhiêu số nguyên dương y để tồn tại số thực x > 1 thỏa mãn

x2xy+log2xy=xy4+15xy30+10y?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Đầu tiên ta có phương trình sau: x2xy+log2xy=xy4+15xy30+10y(*)

2xy+log2xy=y4+15y3010yx2xy+log2xy+30x10yx=y4+15y (1)

Giải thích: ta cô lập vế phải là một hàm theo biến y luôn đồng biến trên 0;+ (f'y=4y3+15>0 y0;+).

Tiếp theo ta khảo sát hàm số gx=2xy+log2xy+30x10yx trên 1;+.

Ta có:g'x=y2xyln2+1xln230x2+10yx2.

Thế y=3 vào ta có g'3=8x+1ln21xln2>64ln21ln2>0,x>1.

Suy ra y3 thì g'x>0, kéo theo đó ta có được:

gx>g1=2y+log2y10y+30limx+gx=+.

Khi ấy để (*)có nghiệmx>1 thì cần có:

2xy+log2xy+30x10yx>2y+log2y10y+30 (2)

Từ (1) và (2) ta suy ra 2y+log2y10y+30<y4+15y

2y+log2y25y+30y4<0,  y3 (3)

Cho vế trái (3) bằng không giải ra nghiệm (shift SOLVE)y16,01 (**), khi đó ta có ý tưởng sau:

Giả sử đảo chiều (3), ta có: 2y+log2y10y+30>y4+15y 

2y+log2y25y+30y4>0 (4).

Tới đây ta sẽ chứng minh bất phương trình (4) luôn đúng với mọi y17.

Xét hàm số hy=2y+log2y25y+30y4 h16=366<0;h17>0 nên suy ra hy<0,y<17 tức hy>0,y17.

Suy ra bất phương trình (4) luôn đúng với mọi y17 tức bất phương trình (3) luôn đúng với mọi 3y17.

Do (**) nên ta thử từng giá trị y:317 theo thứ tự từ lớn xuống.

Nhận thấy y = 17 không thỏa nên 3y<17

Mà đề cho y+ nên ta thử hai giá trị còn lại lần lượt là y1;2, nhận thấy hai giá trị này đều thỏa nên suy ra 1y<17 tức y1;2;...;15;16. Vậy có tất cả 16 giá trị nguyên y thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Kẻ AHSD tại H.

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông cạnh a, SA vuông góc (ABCD) và SA = a căn 3/3 (tham khảo hình bên dưới). Khoảng cách từ điểm A  (ảnh 2)

Dễ thấy CDAB,  CDSACDSADAHCD.

AHSD Þ AHSCD.

Suy ra dA;SCD=AH.

Áp dụng hệ thức lượng trong ΔSAD có:

1AH2=1AD2+1SA2=1a2+1a332=4aAH=a2.

Vậy dA;SCD=AH=a2.

Lời giải

Đáp án đúng là: B

SAABC nên AC là hình chiếu của AC trên mặt phẳng (ABC).

Khi đó, góc giữa SC và mặt phẳng (ABC) SCA^=45° (do SAC vuông cân tại A cạnh a).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP