Câu hỏi:

27/02/2024 1,416

Cho hàm số fx=x322x733x102023x42024. Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số hx=fx4+8x2+mx có số điểm cực tiểu nhiều nhất là S=a;b\c. Giá trị của biểu thức T=a2ab+b2+abc thuộc khoảng nào sau đây?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Trường hợp 1: f(x) = 0 thì ta thu được các nghiệm bội lẻ lần lượt là x=72;x=103 (1)

Trường hợp 2: fx0, thực hiện biến đổi

lnfx=2lnx3+3ln2x7+2023ln3x10+2024lnx4x\3;103;72;4

Đạo hàm hai vế ta có: f'xfx=2x3+62x7+60693x10+2024x4

f'x=fx2x3+62x7+60693x10+2024x4

Ta giải:f'x=0fx2x3+62x7+60693x10+2024x4=0

fx=0L2x3+62x7+60693x10+2024x4=02

Xét hàm số ux=2x3+62x7+60693x10+2024x4 có:

u'x=2x32122x723.60693x1022024x42<0

Suy ra ux luôn nghịch biến trên từng khoảng xác định.

Với limx±fx=0, khi đó ta có bảng biến thiên sau:

Cho hàm số f(x) = (x-3)^2(2x-7)^3(3x-10)^2023(x-4)^2024. Biết rằng tập hợp tất cả các giá trị thực của tham số m (ảnh 1)

Khi đó (2) có các nghiệm là: x=a3;103;x=b103;72;x=c72;4 (3).

Từ (1) và (3), ta suy ra f(x) có 5 điểm cực trị lần lượt là a,72,b,103,c

(với 3<a<72<b<103<c<4).

Tiếp đến ta xét hàm số hx=fx4+8x2+mx 

h'x=4x3+16x+mx4+8x2+mxf'x4+8x2+mxx4+8x2+mx=0

4x3+16x+m=04x4+8x2+mx=05f'x4+8x2+mx=06.

Để hàm số h(x) có nhiều cực tiểu nhất thì (4), (5), (6) phải có nhiều nghiệm bội lẻ nhất.

Khi đó (4) tương đương với:

m=4x316x=qxmq23;q923m6433;6433 (7).

Giải (5), khi đó phương trình tương đương với:

x=0x3+8x+m=0**m=x38x=rxmr263;r263 

m3269;3269 (8).

Từ (7) và (8) ta suy ra m3269;3269\0. (9)

Giải (6), khi đó phương trình tương đương với:

x4+8x2+mx=72;x4+8x2+mx=103x4+8x2+mx=a;x4+8x2+mx=b;x4+8x2+mx=c

x3+8x+m=±72x;x3+8x+m=±103xx3+8x+m=±ax;x3+8x+m=±bx;x3+8x+m=±cx.

Giả sử ta có hàm số px=x3+8x+m ta suy ra để thỏa mãn đề bài thì hàm số p(x) phải luôn cắt các đường cong 72x;103x;ax;bx;cx tại 2 điểm phân biệt tại mỗi đường.

Do c3,6667 (sai số rất nhỏ) nên ta xem như c=72=3,5.

Gọi x0 là hoành độ của điểm tiếp xúc giữa p(x) y=72x.

Khi đó x0 là nghiệm của hệ:

x03+8x0+m=72x03x02+8=72x02x03+8x+m=72x06x0416x027=0x03+8x0+m=72x0x0=±1,75

Suy ra: ±1,753+8±1,75+m=72±1,75m=±6,64.

Như vậy để thỏa mãn yêu cầu đề bài thì ta cần có m6,64;6,64 (10).

Từ (9) và (10) ta suy ra m6,64;6,64\0.

Vậy T=a2ab+b2=36,642115;150.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông cạnh a, SAABCD SA=a33 (tham khảo hình bên dưới). Khoảng cách từ điểm A đến mặt phẳng (SCD)

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông cạnh a, SA vuông góc (ABCD) và SA = a căn 3/3 (tham khảo hình bên dưới). Khoảng cách từ điểm A  (ảnh 1)

Xem đáp án » 27/02/2024 47,481

Câu 2:

Cho hình chóp S.ABC có SAABC; tam giác ABC đều cạnh a và SA = a. Tìm góc giữa SC và mặt phẳng (ABC).

Cho hình chóp S.ABC có SA vuông góc (ABC) ; tam giác ABC đều cạnh a và SA = a. Tìm góc giữa SC và mặt phẳng (ABC). (ảnh 1)

Xem đáp án » 27/02/2024 16,630

Câu 3:

Tập nghiệm của bất phương trình logx2<1 

Xem đáp án » 27/02/2024 10,875

Câu 4:

Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn z2i=2023 là một đường tròn. Tâm của đường tròn đó có tọa độ là

Xem đáp án » 27/02/2024 8,504

Câu 5:

Cho hàm số y=ax+bcx+d đồ thi là đường cong trong hình bên.

Cho hàm số y = ã+b/cx+d có đồ thi là đường cong trong hình bên.   Toạ độ giao điểm của đồ thị hàm số đã cho và trục tung là: (ảnh 1)

Toạ độ giao điểm của đồ thị hàm số đã cho và trục tung là:

Xem đáp án » 27/02/2024 6,607

Câu 6:

Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Xem đáp án » 27/02/2024 5,592

Câu 7:

Có bao nhiêu giá trị nguyên của tham số m2023;2023 để hàm số y=x10xm đồng biến trên khoảng 5;5?

Xem đáp án » 27/02/2024 3,295

Bình luận


Bình luận