Câu hỏi:

28/02/2024 3,771

Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, AB = a, AC = b, AD = c. Khoảng cách từ điểm A đến mặt phẳng (BCD) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, AB = a, AC = b, AD = c. Khoảng cách từ điểm A đến mặt phẳng (BCD) bằng (ảnh 1)

Kẻ AK ^ BC (K Î BC) và AH ^ DK (H Î DK)

Vì AD ^ AB, AD ^ AC nên AD ^ (ABC) AD ^ BC.

Mà AK ^ BC. Do đó BC ^ (ADK) BC ^ AH mà AH ^ DK nên AH ^ (BCD).

Do đó d(A, (BCD)) = AH.

Xét DABC vuông tại A có: 1AK2=1AB2+1AC2=1a2+1b2.

Xét DADK vuông tại A có: 1AH2=1AK2+1AD2=1a2+1b2+1c2.

Vậy dA,BCD=AH=11a2+1b2+1c2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), ABC là tam giác đều cạnh a, SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng (ảnh 1)

Gọi M là trung điểm BC, H là hình chiếu vuông góc của A trên SM.

DABC đều nên AM ^ BC và AM=a32 .

Vì SA ^ (ABC) nên SA ^ BC mà AM ^ BC nên BC ^ (SAM) BC ^ AH.

Lại có AH ^ SM do đó AH ^ (SBC) d(A, (SBC)) = AH.

Xét DSAM vuông tại A, có 1AH2=1AS2+1AM2=14a2+43a2=1912a2AH=2a5719.

Lời giải

Đáp án đúng là: B

Cho tứ diện SABC trong đó SA, SB, SC vuông góc với nhau từng đôi một và SA = 3a, SB = a, SC = 2a.  (ảnh 1)

Dựng AH ^ BC tại H d(A, BC) = AH.

Vì SA ^ SB và SA ^ SC nên SA ^ (SBC) SA ^ BC.

Lại có AH ^ BC nên BC ^ (SAH) BC ^ SH.

Xét DSBC vuông tại S, có 1SH2=1SB2+1SC2=1a2+14a2=54a2SH=2a55  .

Vì SA ^ (SBC) nên SA ^ SH.

Xét DASH vuông tại S, có AH=SA2+SH2=9a2+4a25=7a55  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay