Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC:
a) Chứng minh: AB2 + CH2 = AC2 + BH2.
b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC.
c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC:
a) Chứng minh: AB2 + CH2 = AC2 + BH2.
b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC.
c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH.
Quảng cáo
Trả lời:

a) Áp dụng định lý Pytago vào tam giác AHB, AHC vuông có:
AB2 = BH2 + AH2 ⇒ AH2 = AB2 – BH2
AH2 = AC2 – CH2
Suy ra: AB2 – BH2 = AC2 – CH2
Hay AB2 + CH2 = AC2 + BH2
b) Ta có: EF2 = AE2 + AF2
BC2 = AB2 + AC2
AE < AB, AF < AC
Suy ra: EF2 < BC2
⇒ EF < BC.
c)
Mà AH2 = AC2 – CH2
Nên: CH =
BH = BC – CH = 10 – 6,4 = 3,6(cm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác AED và CEF có:
EA = EC
(đối đỉnh)
ED = EF
⇒ ∆AED = ∆CEF (c.g.c)
⇒ DA = CF
Mà DA = DB nên DB = CF
b) ∆AED = ∆CEF nên:
Suy ra: AB // CF
⇒ (so le trong)
Xét tam giác BDC và FCD có:
DC chung
BD = CF
⇒ ∆BDC = ∆FCD (c.g.c)
c) ∆BDC = ∆FCD nên
Suy ra: DE // BC (2 góc so le trong bằng nhau)
Lại có BC = DF = 2DE
Nên: .
Lời giải

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.
Khi đó OI = (OMN) ∩ (BCD)
b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD
K, H ∈ OI nên K, H ∈ (OMN)
Vậy H = BC ∩ (OMN)
c) K, H ∈ OI nên K, H ∈ (OMN)
Nên K = BD ∩ (OMN).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.