Câu hỏi:

13/07/2024 9,701

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC:

a) Chứng minh: AB2 + CH2 = AC2 + BH2.

b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC.

c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC: a) Chứng minh: AB2 + CH2 = AC2 + BH2. b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC. c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH. (ảnh 1)

a) Áp dụng định lý Pytago vào tam giác AHB, AHC vuông có:

AB2 = BH2 + AH2 AH2 = AB2 – BH2

AH2 = AC2 – CH2

Suy ra: AB2 – BH2 = AC2 – CH2

Hay AB2 + CH2 = AC2 + BH2

b) Ta có: EF2 = AE2 + AF2

BC2 = AB2 + AC2

AE < AB, AF < AC

Suy ra: EF2 < BC2

EF < BC.

c) BC=AB2+AC2=10cm

AH.BC=AB.ACAH=AB.ACBC=6.810=4,8cm

Mà AH2 = AC2 – CH2

Nên: CH = AC2AH2=6,4cm

BH = BC – CH = 10 – 6,4 = 3,6(cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF (ảnh 1)

a) Xét tam giác AED và CEF có:

EA = EC

AED^=CEF^(đối đỉnh)

ED = EF

∆AED = ∆CEF (c.g.c)

DA = CF

Mà DA = DB nên DB = CF

b) ∆AED = ∆CEF nên: A^=ECF^

Suy ra: AB // CF

BDC^=DCF^ (so le trong)

Xét tam giác BDC và FCD có:

DC chung

BDC^=DCF^

BD = CF

∆BDC = ∆FCD (c.g.c)

c) ∆BDC = ∆FCD nên DCB^=CDF^

Suy ra: DE // BC (2 góc so le trong bằng nhau)

Lại có BC = DF = 2DE

Nên: DE=12BC.

Lời giải

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. (ảnh 1)

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.

Khi đó OI = (OMN) ∩ (BCD)

b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD

K, H OI nên K, H (OMN)

Vậy H = BC ∩ (OMN)

c) K, H OI nên K, H (OMN)

Nên K = BD ∩ (OMN).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP