Câu hỏi:

01/03/2024 14,202

Biết F(x)G(x) là hai nguyên hàm của hàm số f(x) trên  và thoả mãn 04fxdx=F4G0+2m , với m > 0. Gọi S là diện tích hình phẳng giới hạn bởi các đường y=Fx , y=Gx ; x=0  x=4 . Khi S = 8 thì m bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Theo đề ta có 04fxdx=F4G0+2mFx04=F4G0+2m

F4F0=F4G0+2mG0F0=2m (1)

Mặt khác, do F(x)  G(x)  là hai nguyên hàm của hàm số f(x) trên  nên ta có G(x) - F(x) = C (không đổi) với mọi x .(2)

Từ (1) và (2) suy ra GxFx=2m>0 , với mọi x .

Khi đó ta có S=04GxFxdx=042m.dx=2mx04=8m .

Theo đề ta có 8m=8m=1 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Điều kiện: x2>0x>2 .

Bất phương trình: log12x21x212x52 .

Kết hợp với điều kiện ta có tập nghiệm S=52;  + .

Lời giải

 

Đáp án đúng là: D

Hàm số y = f(x) nghịch biến trên khoảng (-1;0) 1;+ .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP