Ba khối 6, 7 và 8 lần lượt có 234 học sinh, 264 học sinh và 252 học sinh xếp thành các hàng dọc để diễu hành sao cho số hàng dọc của mỗi khối như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối không có ai đứng lẻ hàng? Khi đó ở mỗi hàng dọc mỗi khối có bao nhiêu học sinh?
Ba khối 6, 7 và 8 lần lượt có 234 học sinh, 264 học sinh và 252 học sinh xếp thành các hàng dọc để diễu hành sao cho số hàng dọc của mỗi khối như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối không có ai đứng lẻ hàng? Khi đó ở mỗi hàng dọc mỗi khối có bao nhiêu học sinh?
Quảng cáo
Trả lời:

Gọi số hàng dọc có thể xếp nhiều nhất là x (x ∈ ℕ; x > 0}
Ta có: x ∈ ƯCLN(234; 264; 252}
234 = 2.32.13
264 = 23.3.11
252 = 22.32.7
ƯCLN(234; 264; 252) = 2.3 = 6.
Vậy có thể xếp được nhiều nhất thành 6 hàng.
Mỗi hàng của khối 6 có số học sinh là:
234 : 6 = 39 (học sinh)
Mỗi hàng của khối 7 có số học sinh là:
264 : 6 = 44 (học sinh)
Mỗi hàng của khối 88 có số học sinh là:
252 : 6 = 42 (học sinh).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Từ (1) và (2) ta có:
⇒
Vậy B không phải là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.