Câu hỏi:

19/08/2025 214 Lưu

Chứng minh A = n3 + (n + 1)3 + (n + 2)3 chia hết cho 9 với mọi n  ℕ*.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A = n3 + (n + 1)3 + (n + 2)3

= n3 + n3 + 3n2 + 3n + 1 + n3 + 6n2 + 12n + 8

= 3n3 + 9n2 + 15n + 9

= 3n2 (n + 1) + 6n ( n + 1) + 9 (n +1)

= 3 (n + 1)(n2 + 2n + 3)

=3(n + 1)[n (n + 2) + 3]

= 3n (n + 1)(n + 2) + 9( n + 1)

Ta có: n; n + 1; n + 2 là 3 số tự nhiên liên tiếp

 3n(n + 1)(n + 2)  9

Mặc khác: 9(n + 1)  9

 A = 3n (n + 1)(n + 2) + 9(n + 1)  9.

Vậy A = n3 + (n + 1)3 + (n + 2)3  9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong 1 lớp học có 40 học sinh trong đó có 30 học sinh đạt học sinh giỏi môn toán 25 (ảnh 1)

Gọi A là tập hợp các học sinh đạt học sinh giỏi môn Toán.

B là tập hợp các học sinh đạt học sinh giỏi môn Văn.

C là tập hợp các học sinh đạt học sinh giỏi cả hai môn Toán và Văn.

Số học sinh đạt học sinh giỏi môn Toán, Văn của lớp là: 40 5 = 35 (học sinh).

Theo sơ đồ Ven ta có: A + B – C = 35. 30 + 25 – C = 35 C = 20.

Do vậy ta có:

Số học sinh chỉ giỏi môn Toán là: A – C = 30 – 20 = 10 (học sinh).

Số học sinh chỉ giỏi môn Văn là: B – C = 25 – 20 = 5 (học sinh).

Nên số học sinh chỉ giỏi một trong hai môn Toán hoặc Văn là: 10 + 5 = 15 (học sinh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP