Câu hỏi:

19/08/2025 554 Lưu

Cho p, q là số nguyên tố và phương trình x2 − px + q = 0 có nghiệm nguyên dương. Tìm p, q.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để phương trình đã cho có nghiệm nguyên dương thì Δ = p2 − 4q là số chính phương.

Đặt p− 4q = k2 

 4q = (p − k)(p + k) với k là số tự nhiên.

Do p − k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.

Mặt khác p − k < p + k và q là số nguyên tố nên:

p − k = 2 và p + k = 2q hoặc p − k = 4 và p + k = q

Nếu p − k = 4 và p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p − k).

Nếu p − k = 2 và p + k = 2q thì 2p = 2q + 2 tức p = q + 1.

Do đó q chẵn tức q = 2. Suy ra p = 3.

Thử lại ta thấy phương trình: x2 − 3x + 2= 0 có nghiệm nguyên dương x = 1 và x = 2.

Vậy p = 3; q = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong 1 lớp học có 40 học sinh trong đó có 30 học sinh đạt học sinh giỏi môn toán 25 (ảnh 1)

Gọi A là tập hợp các học sinh đạt học sinh giỏi môn Toán.

B là tập hợp các học sinh đạt học sinh giỏi môn Văn.

C là tập hợp các học sinh đạt học sinh giỏi cả hai môn Toán và Văn.

Số học sinh đạt học sinh giỏi môn Toán, Văn của lớp là: 40 5 = 35 (học sinh).

Theo sơ đồ Ven ta có: A + B – C = 35. 30 + 25 – C = 35 C = 20.

Do vậy ta có:

Số học sinh chỉ giỏi môn Toán là: A – C = 30 – 20 = 10 (học sinh).

Số học sinh chỉ giỏi môn Văn là: B – C = 25 – 20 = 5 (học sinh).

Nên số học sinh chỉ giỏi một trong hai môn Toán hoặc Văn là: 10 + 5 = 15 (học sinh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP