Câu hỏi:

18/03/2024 599

Vòng chung kết bóng đá tiểu học 2014, có 5 đội tuyển của 5 trường tham gia thi đấu theo thể thức vòng tròn 1 lượt. Đội thắng được 2 điểm, thua 0 điểm và nếu trận đấu có kết quả hòa thì mỗi đội được 1 điểm. Sau khi thi đấu người ta thấy tổng điểm của 5 đội là 21. Tính số điểm đội vô địch?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với 5 đội tuyển thì có số trận thi đấu là:

5.4 : 2 = 10 (trận)

Giả dụ các trận đều hòa thì tổng số điểm của hai đội mỗi trận bằng 2 nên tổng số điểm của các đội là:

2.10 = 20 (điểm)

Nhưng đề ra tổng số điểm của 5 đội là 21 điểm, mà mỗi trận không hòa thì tổng điểm của hai đội là 3 điểm, chênh lệch 1 điểm so với trận hòa. Vì vậy mà phải đổi một trận hòa với 1 trận không hòa

 10 trận thì có 9 trận hòa, 1 trận không hòa. Đội giành vô địch là đội đã thắng trong trận không hòa.

Từ đó, ta thấy đội vô địch thi đấu 4 trận thì chỉ thắng 1 trận, hòa 3 trận nên số điểm họ có là: 1.3 + 3.1 = 6 (điểm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án C

Tất các các hàm số đều có TXĐ:  D = R

 Do đó x D x D.

Bây giờ ta kiểm tra f(x) = f(-x) hoặc f(-x) = - f(x).

·       Với y = f(x) = - sinx.

Ta có f(-x)= - sin (-x) = sinx = - (- sinx) f(−x)=−f(x)

Suy ra hàm số y = -sinx là hàm số lẻ.

·       Với y = f(x) = cosx –sinx.

Ta có f(−x) = cos(−x) sin(−x) = cosx + sinx f(−x) −f(x) và f(x)

Suy ra hàm số y = cosx - sinx không chẵn không lẻ.

·       Với y = f(x) = cosx + sin2x

Ta có f(−x) = cos(−x) + sin2(−x) = cos(−x) + [sin(−x)]2 = cosx+[−sinx]2 = cosx + sin2x

f(−x) = f(x)

Suy ra hàm số y = cosx + sin2x là hàm số chẵn.

·       Với y = f(x) = cosxsinx.

Ta có f(−x) = cos(−x).sin(−x) = −cosxsinx

f(−x) = −f(x)

Suy ra hàm số y = cosxsinx là hàm số lẻ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP