Câu hỏi:

12/07/2024 202

Chứng tỏ rằng: Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi ba số tự nhiên liên tiếp là a, a + 1, a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 (k N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 3

(vì 3k 3 và 3 3 nên 3k + 3 3)

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 3

(vì 3k 3 và 3 3 nên 3k + 3 3)

Vậy trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án C

Tất các các hàm số đều có TXĐ:  D = R

 Do đó x D x D.

Bây giờ ta kiểm tra f(x) = f(-x) hoặc f(-x) = - f(x).

·       Với y = f(x) = - sinx.

Ta có f(-x)= - sin (-x) = sinx = - (- sinx) f(−x)=−f(x)

Suy ra hàm số y = -sinx là hàm số lẻ.

·       Với y = f(x) = cosx –sinx.

Ta có f(−x) = cos(−x) sin(−x) = cosx + sinx f(−x) −f(x) và f(x)

Suy ra hàm số y = cosx - sinx không chẵn không lẻ.

·       Với y = f(x) = cosx + sin2x

Ta có f(−x) = cos(−x) + sin2(−x) = cos(−x) + [sin(−x)]2 = cosx+[−sinx]2 = cosx + sin2x

f(−x) = f(x)

Suy ra hàm số y = cosx + sin2x là hàm số chẵn.

·       Với y = f(x) = cosxsinx.

Ta có f(−x) = cos(−x).sin(−x) = −cosxsinx

f(−x) = −f(x)

Suy ra hàm số y = cosxsinx là hàm số lẻ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP