b) Nếu giáo viên lớp chuẩn bị được tấm vải bạt dài 15m rộng 7m thì tấm vải bạt cần thêm diện tích là bao nhiêu đủ để làm hai mái và trải đáy của lều?
b) Nếu giáo viên lớp chuẩn bị được tấm vải bạt dài 15m rộng 7m thì tấm vải bạt cần thêm diện tích là bao nhiêu đủ để làm hai mái và trải đáy của lều?
Câu hỏi trong đề: 7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án !!
Quảng cáo
Trả lời:
b) Diện tích vải bạt giáo viên chuẩn bị là:
15.7 = 105 (m2)
Vậy diện tích tấm bạt đã đủ để làm hai mái và trải đáy.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án C
Tất các các hàm số đều có TXĐ: D = R
Do đó ∀x ∈ D ⇒ − x ∈ D.
Bây giờ ta kiểm tra f(x) = f(-x) hoặc f(-x) = - f(x).
· Với y = f(x) = - sinx.
Ta có f(-x)= - sin (-x) = sinx = - (- sinx) ⇒ f(−x)=−f(x)
Suy ra hàm số y = -sinx là hàm số lẻ.
· Với y = f(x) = cosx –sinx.
Ta có f(−x) = cos(−x) − sin(−x) = cosx + sinx ⇒ f(−x) ≠ −f(x) và f(x)
Suy ra hàm số y = cosx - sinx không chẵn không lẻ.
· Với y = f(x) = cosx + sin2x
Ta có f(−x) = cos(−x) + sin2(−x) = cos(−x) + [sin(−x)]2 = cosx+[−sinx]2 = cosx + sin2x
⇒ f(−x) = f(x)
Suy ra hàm số y = cosx + sin2x là hàm số chẵn.
· Với y = f(x) = cosxsinx.
Ta có f(−x) = cos(−x).sin(−x) = −cosxsinx
⇒ f(−x) = −f(x)
Suy ra hàm số y = cosxsinx là hàm số lẻ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.