Câu hỏi:

13/07/2024 754

Cho góc nhọn xBy^=α. Xét tam giác ABC vuông tại A, tam giác A’BC’ vuông tại A’ với A, A’ thuộc tia Bx và C, C’ thuộc tia By (Hình 1). Do ∆ABC ∆A’BC’ nên ACBC=A'C'BC'.

Cho góc nhọn góc xBy = alpha. Xét tam giác ABC vuông tại A, tam giác A’BC’ vuông (ảnh 1)

Như vậy, tỉ số giữa cạnh đối AC của góc nhọn α và cạnh huyền BC trong tam giác vuông ABC không phụ thuộc vào việc chọn tam giác vuông đó.

Tỉ số ACBC có mối liên hệ như thế nào với độ lớn góc α?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Xét ∆ABC vuông tại A, theo định nghĩa tỉ số lượng giác sin, ta có: ACBC=sinα.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét ∆ABC vuông tại A, theo định lý Pythagore, ta có:

BC2 = AB2 + AC2

Suy ra AB2 = BC2 – AC2 = 62 – 42 = 20.

Do đó AB=20=225=25 cm.

Xét ∆ABC vuông tại A, ta có:

sinB=ACBC=46=23; cosB=ABBC=256=53;

tanB=ACAB=425=25=255; cotB=ABAC=254=52.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP