Câu hỏi:
13/07/2024 2,264a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm ở Ví dụ 4 sau khi đã loại bỏ các giá trị ngoại lệ. Có nhận xét gì về khoảng biến thiên, khoảng tứ phân vị vừa tìm được và khoảng biến thiên, khoảng tứ phân vị ban đầu?
b) Hãy so sánh mức độ phân tán của hai mẫu số liệu chiều cao của các học sinh nữ lớp 12C và 12D ở Thực hành 1.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm ban đầu là:
R = 33 – 15 = 18 (phút).
Từ Ví dụ 4, ta có khoảng tứ phân vị của mẫu số liệu ghép nhóm ban đầu là .
Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu x > Q3 + 1,5∆Q hoặc x < Q1 + 1,5∆Q.
Hay x > hoặc x < .
Do đó, chỉ có đúng 1 lần ông Thắng đi hết 32 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Sau khi bỏ giá trị ngoại lệ, ta có bảng thống kê sau:
Thời gian (phút) |
[15; 18) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
Số lần |
22 |
38 |
27 |
8 |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là:
R' = 30 – 15 = 15 (phút).
Cỡ mẫu n' = 99.
Gọi y1; y2; y3; …; y99 là mẫu số liệu gốc gồm thời gian 99 lần đi xe buýt của ông Thắng được xếp theo thứ tự không giảm.
Ta có: y1; …; y22 ∈ [15; 18); y23; …; y60 ∈ [18; 21); y61; …; y87 ∈ [21; 24);
y88; …; y95 ∈ [24; 27); y95; …; y99 ∈ [27; 30).
Tứ phân vị thứ nhất của mẫu số liệu gốc là y25 ∈ [18; 21). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là: .
Tứ phân vị thứ ba của mẫu số liệu gốc là y75 ∈ [21; 24). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là: .
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là:.
Nhận xét: Sau khi loại bỏ giá trị ngoại lệ, khoảng biến thiên giảm mạnh, còn khoảng tứ phân vị mới không bị ảnh hưởng nhiều.
b)
Lớp 12C:
Cỡ mẫu n = 2 + 7 + 12 + 3 + 0 + 1 = 25.
Gọi x1; x2; …; x25 là mẫu số liệu gốc về chiều cao của 25 học sinh nữ lớp 12C được xếp theo thứ tự không giảm.
Ta có x1; x2 ∈ [155; 160), x3; x4; …; x9 ∈ [160; 165),
x10; x11; …; x21 ∈ [165; 170), x22; …; x24 ∈ [170; 175), x25 ∈ [180; 185).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (x6 + x7) ∈ [160; 165). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:.
Tứ phân vị thứ ba của mẫu số liệu gốc là (x19 + x20) ∈ [165; 170). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12C là:
Lớp 12D:
Cỡ mẫu n' = 5 + 9 + 8 + 2 + 1 = 25.
Gọi y1; y2; …; y25 là mẫu số liệu gốc về chiều cao của 25 học sinh nữ lớp 12D được xếp theo thứ tự không giảm.
Ta có y1; y2; …; y5 ∈ [155; 160), y6; y7; …; y14 ∈ [160; 165),
y15; y16; …; y22 ∈ [165; 170), y23; y24 ∈ [170; 175), y25 ∈ [175; 180).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (y6 + y7) ∈ [160; 165). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
Số cây |
5 |
12 |
25 |
44 |
14 |
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?
Câu 2:
Bảng sau thống kê lượng mưa (đơn vị: mm) đi được vào tháng 7 từ năm 2002 đến 2021 tại một trạm quan trắc đặt ở Cà Mau.
341,4 |
187,1 |
242,2 |
522,9 |
251,4 |
432,2 |
200,7 |
388,6 |
258,4 |
288,5 |
298,1 |
413,5 |
413,5 |
332 |
421 |
475 |
400 |
305 |
520 |
147 |
(Nguồn: Tổng cục Thống kê)
a) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu trên.
b) Hãy chia mẫu số liệu trên thành 4 nhóm với nhóm đầu tiên là [140; 240) và lập bảng tần số ghép nhóm.
c) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm và so sánh với kết quả tương ứng thu được ở câu a).
Câu 3:
Sử dụng khoảng biến thiên, hãy cho biết chiều cao của học sinh nữ lớp nào có độ phân tán lớn hơn.
Câu 4:
Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.
Ai là người có thời gian tập đều hơn?
Câu 5:
Biểu đồ dưới đây biểu diễn số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến dưới 6 lượt đặt bàn; cột thứ hai biểu diễn số ngày có từ 6 đến dưới 11 lượt đặt bàn; …
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên.
Câu 6:
Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:
Tuổi kết hôn |
[19; 22) |
[22; 25) |
[25; 28) |
[28; 31) |
[31; 34) |
Số phụ nữ khu vực A |
10 |
27 |
31 |
25 |
7 |
Số phụ nữ khu vực B |
47 |
40 |
11 |
2 |
0 |
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của từng mẫu số liệu ghép nhóm ứng với mỗi khu vực A và B.
b) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực nào có độ tuổi kết hôn đồng đều hơn?
Câu 7:
Bảng sau thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.
Cân nặng (g) |
[250; 290) |
[290; 330) |
[330; 370) |
[370; 410) |
[410; 450) |
Số quả xoài |
3 |
13 |
18 |
11 |
5 |
Có ý kiến cho rằng: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200 g”. Ý kiến đó đúng hay sai? Giải thích.
về câu hỏi!