Ròng rọc là một loại máy cơ đơn giản có rãnh và có thể quay quanh một trục, được sử dụng rộng rãi trong công việc nâng lên và hạ xuống vật nặng trong cuộc sống. Trong Hình 41a, có một sợi dây không dãn vắt qua ròng rọc.
Giả sử ròng rọc được minh họa bởi đường tròn (O), sợi dây vắt qua ròng rọc được minh họa bởi nửa đường tròn MtN và hai tiếp tuyến Ma, Nb của đường tròn (O) (Hình 41b). Chứng minh Ma // Nb.
Ròng rọc là một loại máy cơ đơn giản có rãnh và có thể quay quanh một trục, được sử dụng rộng rãi trong công việc nâng lên và hạ xuống vật nặng trong cuộc sống. Trong Hình 41a, có một sợi dây không dãn vắt qua ròng rọc.

Giả sử ròng rọc được minh họa bởi đường tròn (O), sợi dây vắt qua ròng rọc được minh họa bởi nửa đường tròn MtN và hai tiếp tuyến Ma, Nb của đường tròn (O) (Hình 41b). Chứng minh Ma // Nb.
Quảng cáo
Trả lời:
Do Ma, Nb là các tiếp tuyến của đường tròn (O) tại M nên Ma ⊥ OM tại M và Nb ⊥ ON tại N.
Mà MtN là nửa đường tròn nên MN là đường kính đi qua tâm O.
Do đó Ma ⊥ MN và Nb ⊥ MN, suy ra Ma // Nb.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên DA = DC (tính chất hai tiếp tuyến cắt nhau).
Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên EB = EC (tính chất hai tiếp tuyến cắt nhau).
Do đó DA + EB = DC + EC hay AD + BE = DE.
b) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên OA là tia phân giác của (tính chất hai tiếp tuyến cắt nhau).
Do đó (tính chất tia phân giác).
Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên OE tia phân giác của (tính chất hai tiếp tuyến cắt nhau).
Do đó (tính chất tia phân giác).
Lời giải

Gọi H, K và N lần lượt là hình chiếu của I lên MA, MA và AB.
Theo cách vẽ, ta có IH ⊥ MA, IK ⊥ MB, IN ⊥ AB nên
Xét ∆ANI (vuông tại N) và ∆AHI (vuông tại H) có:
AI là cạnh chung; (do AI là phân giác của
Do đó ∆ANI = ∆AHI (cạnh huyền – góc nhọn).
Suy ra IN = IH (hai cạnh tương ứng). (1)
Vì MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M với A, B là các tiếp điểm nên MO là tia phân giác của hay MI là tia phân giác của
Xét ∆MHI (vuông tại H) và ∆MKI (vuông tại K) có:
MI là cạnh chung và (do MI là tia phân giác của
Do đó ∆MHI = ∆MKI (cạnh huyền – góc nhọn).
Suy ra IH = IK (hai cạnh tương ứng). (2)
Từ (1) và (2) suy ra IN = IH = IK.
Vậy điểm I cách đều ba đường thẳng MA, MB và AB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.