Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c) Ta có: DOE^=COD^+COE^

 COD^=12COA^   COE^=12COB^(chứng minh ở câu b)

Do đó DOE^=12COA^+COB^=12AOB^=12180°=90°.

Vậy tam giác ODE vuông tại O.

d) Vì DE là tiếp tuyến của đường tròn (O) tại C nên OC DE tại C.

Xét ∆ODE và ∆CDO có:

DOE^=DCO^=90° ODE^  là góc chung 

Do đó ∆ODE ∆CDO (g.g)

Suy ra OECO=DEDO   (tỉ số các cạnh tương ứng)

Nên CO=ODOEDE   hay ODOEDE=R.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên DA = DC (tính chất hai tiếp tuyến cắt nhau).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên EB = EC (tính chất hai tiếp tuyến cắt nhau).

Do đó DA + EB = DC + EC hay AD + BE = DE.

b) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên OA là tia phân giác của  COA^(tính chất hai tiếp tuyến cắt nhau).

Do đó COD^=12COA^  (tính chất tia phân giác).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên OE tia phân giác của COB^  (tính chất hai tiếp tuyến cắt nhau).

Do đó  COE^=12COB^(tính chất tia phân giác).

Lời giải

Kẻ OH AB tại H và OH cắt BM tại N.

Xét ∆OAB có OA = OB (bán kính đường tròn (O)) nên ∆OAB cân tại A.

∆OAB cân tại A có đường cao OH nên OH đồng thời là đường phân giác của AOB^.

Suy ra AOH^=12AOB^.

Theo bài,  MAB^=12AOB^ nên AOH^=MAB^.

Xét ∆OAH vuông tại H, ta có: AOH^+OAH^=90°   (tổng hai góc nhọn trong tam giác vuông)

Suy ra MAB^+OAH^=90°  hay OAM^=90°.

Do đó MA OA tại A, mà OA là bán kính của đường tròn (O) nên MA là tiếp tuyến của đường tròn (O).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP