Cho tam giác \(ABC\) có số đo của ba góc lập thành cấp số cộng và số đo góc nhỏ nhất bằng \(30^\circ .\) Góc có số đo lớn nhất trong ba góc của tam giác này là
Cho tam giác \(ABC\) có số đo của ba góc lập thành cấp số cộng và số đo góc nhỏ nhất bằng \(30^\circ .\) Góc có số đo lớn nhất trong ba góc của tam giác này là
D. \(100^\circ .\)
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Chọn B
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
B. \[sin\left( {\pi + \alpha } \right) = {\rm{sin}}\alpha \].
D. \[tan\left( {\pi + 2\alpha } \right) = \cot \left( {2\alpha } \right)\].
Lời giải
Chọn A
Lời giải
Hình vuông đầu tiên \(\left( {{C_1}} \right)\) có cạnh bằng \(a\) và diện tích là \({S_1} = {a^2}\).
Từ đề bài, ta thấy cạnh của hình vuông \(\left( {{C_2}} \right)\) là \({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).
Khi đó diện tích của hình vuông \(\left( {{C_2}} \right)\) là \({S_2} = {\left( {\frac{{a\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).
Cạnh của hình vuông \(\left( {{C_3}} \right)\) là \({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}a.\)
Khi đó diện tích của hình vuông \(\left( {{C_3}} \right)\) là \({S_3} = {\left( {\frac{5}{8}a} \right)^2} = {\left( {\frac{5}{8}} \right)^2}{a^2} = {\left( {\frac{5}{8}} \right)^2}{S_1}.\)
Lý luận tương tự ta có \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) tạo thành một dãy cấp số nhân \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}\).
Vì \(\left| q \right| = \frac{5}{8} < 1\) nên \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) là một cấp số nhân lùi vô hạn với \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}.\)
Tổng của cấp số nhân lùi vô hạn này là
\(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\)\( = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{5}{8}}} = \frac{{8{a^2}}}{3}\).
Mà \(T = \frac{{32}}{3}\) nên \(\frac{{8{a^2}}}{3} = \frac{{32}}{3} \Leftrightarrow {a^2} = 4\). Suy ra \(a = 2\) (do độ dài cạnh là số dương).
Câu 3
B. \(A{A_1}{\rm{//}}\left( {BC{C_1}} \right).\)
D. \(A{A_1}{B_1}B\) là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. Trùng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
B. \[D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{6} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\].
D. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \( + \infty .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
D. \(\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.