Câu hỏi:

13/07/2024 4,809

Cho đường tròn (I) có các dây cung AB, CD, EF. Cho biết AB và CD đi qua tâm I, EF không đi qua I (Hình 11). Hãy so sánh độ dài AB, CD, EF.

Cho đường tròn (I) có các dây cung AB, CD, EF. Cho biết AB và CD đi qua tâm I, (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong đường tròn (I), AB và CD là đường kính đi qua tâm I, EF là dây cung không đi qua I.

Do đó AB = CD và EF < AB, EF < CD.

Vậy EF < AB = CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có hai đường cao BB’ và CC’. Gọi O là trung điểm của BC. (ảnh 1)

a) Xét ∆BCB’ vuông tại B’ có đường trung tuyến B’O ứng với cạnh huyền BC, do đó B'O=12BC.

Mà O là trung điểm của BC nên OB=OC=12BC.

Do đó B'O=OB=OC=12BC.

Chứng minh tương tự đối với ∆BCC’ vuông tại C’, ta cũng có C'O=OB=OC=12BC.

Suy ra B'O=C'O=OB=OC=12BC.

Vậy đường tròn tâm O bán kính OB’ đi qua B, C, C’.

b) Xét đường tròn tâm O bán kính OB’, dây BC là đường kính đi qua tâm O, dây B’C’ là dây cung không đi qua tâm O.

Do đó BC > B’C’.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP