Câu hỏi:

13/07/2024 700

Dùng compa đo bán kính và vẽ lại các hình trong Hình 19.

Dùng compa đo bán kính và vẽ lại các hình trong Hình 19.   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

– Hình 19a):

Bước 1. Đặt đầu nhọn vào tâm đường tròn lớn, mở cung của compa sao cho đầu bút nằm trên đường tròn lớn, ta đo được bán kính của đường tròn lớn.

Bước 2. Vẽ đường tròn với bán kính ta vừa đo được, ta được đường tròn lớn.

Bước 3. Kẻ đường kính AB của đường tròn lớn.

Bước 4. Vẽ nửa đường tròn đường kính OA sao cho nửa đường tròn nằm phía trên so với AB.

Bước 5. Vẽ nửa đường tròn đường kính OB sao cho nửa đường tròn nằm phía dưới so với AB.

Bước 6. Xóa tên các điểm vừa đặt, tô màu giống Hình 19a).

Dùng compa đo bán kính và vẽ lại các hình trong Hình 19.   (ảnh 2)

– Hình 19b):

Bước 1.

Đặt đầu nhọn vào tâm đường tròn nhỏ nhất, mở cung của compa sao cho đầu bút nằm trên đường tròn đó, ta đo được bán kính của đường tròn nhỏ nhất.

Vẽ đường tròn với bán kính ta vừa đo được, ta được đường tròn nhỏ nhất.

Bước 2.

Đặt đầu nhọn vào tâm đường tròn thứ hai, mở cung của compa sao cho đầu bút nằm trên đường tròn đó, ta đo được bán kính của đường tròn thứ hai.

Vẽ đường tròn có tâm trùng với tâm đường tròn nhỏ nhất, với bán kính ta vừa đo được, ta được đường tròn thứ hai.

Bước 3. Thực hiện lặp lại Bước 2 với 4 đường tròn còn lại.

Bước 4. Tô màu giống Hình 19b).

Dùng compa đo bán kính và vẽ lại các hình trong Hình 19.   (ảnh 3)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có hai đường cao BB’ và CC’. Gọi O là trung điểm của BC. (ảnh 1)

a) Xét ∆BCB’ vuông tại B’ có đường trung tuyến B’O ứng với cạnh huyền BC, do đó B'O=12BC.

Mà O là trung điểm của BC nên OB=OC=12BC.

Do đó B'O=OB=OC=12BC.

Chứng minh tương tự đối với ∆BCC’ vuông tại C’, ta cũng có C'O=OB=OC=12BC.

Suy ra B'O=C'O=OB=OC=12BC.

Vậy đường tròn tâm O bán kính OB’ đi qua B, C, C’.

b) Xét đường tròn tâm O bán kính OB’, dây BC là đường kính đi qua tâm O, dây B’C’ là dây cung không đi qua tâm O.

Do đó BC > B’C’.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay