Câu hỏi:

24/04/2024 913 Lưu

b) Tính số đo AMB^ tạo bởi hai tiếp tuyến AM, BM và số đo AOB^ (kết quả làm tròn đến phút).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Xét ∆OAM vuông tại A, ta có: sinAMO^=OAOM=1535=37.

Suy ra AMO^25°23'.

Vì MA, MB là hai tiếp tuyến của đường tròn (O; 15 cm) cắt nhau tại M nên MA là tia phân giác của góc AMB.

Do đó AMB^=2AMO^225°23'=50°46'.

Xét tứ giác OAMB có: OAM^+AMB^+OBM^+AOB^=360° (tổng các góc của một tứ giác).

Suy ra AOB^=360°OAM^+AMB^+OBM^

Do đó AOB^360°90°+50°46'+90°=360°230°46'=129°14'.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có đường tròn (O) nằm trong và tiếp xúc với ba cạnh (ảnh 2)

Ta có:

AE, AM là hai tiếp tuyến của (O) cắt nhau tại A nên AE = AM = 6 cm (tính chất hai tiếp tuyến cắt nhau).

BM, BP là hai tiếp tuyến của (O) cắt nhau tại B nên BM = BP = 3 cm (tính chất hai tiếp tuyến cắt nhau).

CP, CE là hai tiếp tuyến của (O) cắt nhau tại C nên CP = CE = 8 cm (tính chất hai tiếp tuyến cắt nhau).

Chu vi tam giác ABC là:

AB + BC + CA = AM + BM + BP + CP + CE + AE

= 6 + 3 + 3 + 8 + 8 + 6 = 34 (cm).

Lời giải

Xét ∆ABC có:

AB2 + BC2 = 92 + 122 = 225;

AC2 = 152 = 225.

Do đó AB2 + BC2 = AC2,

Theo định lí Pythagore đảo, ta có ∆ABC vuông tại B.

Suy ra AB BC hay AB OB.

Xét đường tròn (O) có AB OB tại B thuộc đường tròn (O) nên AB là tiếp tuyến của đường tròn (O).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP