Câu hỏi:
19/06/2024 236
Cho \(\int {\left( {a{x^2} + bx + 5} \right)} \,{e^x}\;{\rm{d}}x = \left( {3{x^2} - 8x + 13} \right){e^x} + C\) với \[a\,,\,\,b\] là các số nguyên. Giá trị biểu thức \(S = a + b\) bằng
Cho \(\int {\left( {a{x^2} + bx + 5} \right)} \,{e^x}\;{\rm{d}}x = \left( {3{x^2} - 8x + 13} \right){e^x} + C\) với \[a\,,\,\,b\] là các số nguyên. Giá trị biểu thức \(S = a + b\) bằng
Quảng cáo
Trả lời:
Xét \(I = \int {\left( {a{x^2} + bx + 5} \right)\,} {e^x}\;{\rm{d}}x\). Đặt \(\left\{ {\begin{array}{*{20}{l}}{u = a{x^2} + bx + 5 \Rightarrow {\rm{d}}u = (2ax + b){\rm{d}}x}\\{\;{\rm{d}}v = {e^x}\;{\rm{d}}x \Rightarrow v = {e^x}}\end{array}} \right.\).
Khi đó: \(I = \int {\left( {a{x^2} + bx + 5} \right)} \,{e^x}\;{\rm{d}}x = \left( {a{x^2} + bx + 5} \right){e^x} - \int {(2ax + b)} \,{e^x}\;{\rm{d}}x\)
\( = \left( {a{x^2} + bx + 5} \right){e^x} - \left( {2ax + b} \right){e^x} + \int 2 a \cdot {e^x}\;{\rm{d}}x\)
\( = \left( {a{x^2} + bx + 5} \right){e^x} - \left( {2ax + b} \right){e^x} + 2a{e^x} + C\)\[ = {e^x}\left[ {a{x^2} + \left( {b - 2a} \right) + \left( {5 - b + 2a} \right)} \right] + C.\]
Ta có \(\int {\left( {a{x^2} + bx + 5} \right)\,} {e^x}\;{\rm{d}}x = \left( {3{x^2} - 8x + 13} \right){e^x} + C\)
\( \Leftrightarrow {e^x}\left[ {a{x^2} + \left( {b - 2a} \right) + \left( {5 - b + 2a} \right)} \right] + C = \left( {3{x^2} - 8x + 13} \right){e^x} + C\)
\( \Leftrightarrow a{x^2} + \left( {b - 2a} \right) + \left( {5 - b + 2a} \right) = 3{x^2} - 8x + 13\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3}\\{b - 2a = - 8}\\{5 - b + 2a = 13}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3}\\{b = - 2}\end{array}} \right.} \right.\) (thoả mãn)
Suy ra \(S = a + b = 1.\) Chọn A.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Xét hàm số \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Ta có \(T' = - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)
Nhiệt độ thấp nhất trong phòng đạt được là:
\({T_{\min }} = T\left( {10} \right) = - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).
Đáp án: \(18,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.