Câu hỏi:

19/06/2024 866

Một chất điểm chuyển động trên đường thẳng \[Ox\] nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc thời gian \[t\] (giây) là . Biết vận tốc ban đầu bằng 10m/s. Hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vận tốc của vật được tính theo công thức \(v(t) = 10 + {t^2} - 7t\,\,(m/s).\)

Quãng đường vật đi được tính theo công thức \(S\left( t \right) = \int v (t)dt = \frac{{{t^3}}}{3} - \frac{7}{2}{t^2} + 10t\,\,(m).\)

Ta có \(S'\left( t \right) = {t^2} - 7t + 10 \Rightarrow S'\left( t \right) = 0 \Leftrightarrow {t^2} - 7t + 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 2}\\{t = 5}\end{array}} \right.\)

\( \Rightarrow S\left( 0 \right) = 0;\,\,S\left( 2 \right) = \frac{{26}}{3};\,\,S\left( 5 \right) = \frac{{25}}{6};\,\,S\left( 6 \right) = 6\)\( \Rightarrow {\max _{[0;\,\,6]}}S(t) = S(2) = \frac{{26}}{3}.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Dân cư nông thôn của nước ta chiếm tỉ lệ cao và ngày càng giảm. Chọn C.

Lời giải

Xét hàm số \(T =  - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Ta có \(T' =  - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)

Nhiệt độ thấp nhất trong phòng đạt được là:

\({T_{\min }} = T\left( {10} \right) =  - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).

Đáp án: \(18,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP